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Preface

There are countless ways to approach a given area of scientific inquiry such as per-
ception, and one hopes that the specific topic a given scientist devotes his or her
energies to for vears is one which is well-suited to their interests and avocations. My
dissertation concerns the human ability to perceive the speed of objects moving in
their field of view. While one might conclude from this that speed perception is a
topic which has fascinated me for vears because of its inherent interest, one would
be mistaken. Instead. speed perception is a topic which I chose because it has prop-
erties which, I have found, are characteristic of problems I find interesting. These

properties are:

Speed perception is a psychological phenomenon

I am fundamentally interested in perception, which I define to be the processes and
structures responsible for the ability of animals to be aware of their environment.
Speed perception in this regard is clearly one of myriad other tiny aspects of percep-
tion. But it sits squarely in the world of perception—while it is implemented by a
biological substrate, one of the characteristics of speed perception which appeals to
me is that this implementation is not obvious from what we know about biology. As
will be discussed in detail later, the speed which my subjects perceive and base their

judgments on is expressed in psychological units, not neuronal units or even physical,
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“real-world” units. It is a mental construct, which while built from biological parts
and with, most of the time, a fairly stable relationship to something about the world

out there, lives only in our heads.

Speed perception is tightly bound to physiology

As just mentioned, speed perception is a psychological entity built from biological
parts. As will be described in detail later, the considerable physiological data which
has been accumulated on visual motion perception does not paint a clear picture of
how the brain figures out how fast the things it sees are going. In fact. the mechanisms
which the brain appears to use are quite unlike those an engineer would use when
designing a speed sensor. This is no doubt due to the fact. first, that nature does
not design task-specific systems but instead evolves processes which yield increased
adaptability of the organism as a whole, and, more usefully perhaps, to the fact that
visual neurons are not speed sensors. Instead, each neuron is a color sensor, shape
sensor, distance sensor, friendliness sensor, and mother sensor, all at the same time.
The paucity of careful studies of speed perception is an indication of our guess at the
place of “speed” on the neuronal to-do list. Whatever data is available has shown
that analvsis of neuronal responses does not easily explain how speed is perceived.
However, neurons do transmit all the information which is used (by later neurons)

to compute speed. Hence the puzzle, hence the fun.

A field where theories and data mingle

Science mostly progresses in small, evolutionary steps. Experimentalists design and
run experiments which produce data, and theorists read the data and dream up

theories to explain existing data and predict the results of future experiments. In
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some subfields of Physics. the theorists are ahead of the experimentalists by at least
a lifetime—most experimentalists test old theories and most theorists will never see
their theories put to the test. In vision research. on the other hand, one can do
both theory and experiments. Furthermore, if one wishes to. one can do both theory
and experiments which are very closely tied to one another. Speed is such an area.
As will be clear in the next few chapters. the respective jargons used by theorists.
psychophysicists and physiologists when discussing speed are easily mapped one onto
another. The contribution of theory in shaping the experimental work is clear. as
the predictions of speed models bring directly to bear on what experiments should
be done. The reciprocal relationship holds, as psychophysical data can sometimes
irrefutably disprove a model. This interplay is due to the fact that computational
theories are models of the brain and are expected to produce the same data as
the experiments. By studying a “low-level” process such as speed. one can be as

grounded in data as one wants to be. Which suits me fine.
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Chapter 1

Introduction

When walking through the world we, like all animals, use visual information to tell
us where we are heading, where prey is (and where it is likely to be). where predators
are (and whether they are coming our way). This information is typically categorized
by scientists according to the physical dimensions along which we believe the world
(the stimulus) varies. Take for example the case of a cheetah chasing an antelope.
The cheetah is looking at the antelope it has chosen for its supper, while running
as fast as its muscles will let it. The cheetah’s task is quite simple in theory—it
has to keep running while keeping the antelope straight ahead, so that it is likely
to intercept it. To do this, its visual system must identify the antelope within its
visual field—it probably uses color information and spatial information to do so.
It must detect movements of the antelope away from the cheetah’s path, probably
by detecting the change in the position of the antelope on its retina away from the
fovea—this is visual motion information, the topic of this dissertation. There are
many levels at which the processes underlying the perception of visual motion can
be studied. At one end of the motion system, one can study how the neurons in the
early stages of the visual cortex are able to extract motion signals from their afferent

connections. At the other end of the motion continuum, one can study how the
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perceptual system is able to guide active movement using the information carried
bv the pattern of flow of objects in the visual world. The work reported in this
dissertation concerns a level of processing which is between these two extremes. I
am interested in the processes by which the visual system goes from the earliest level
of neuronal coding of visual motion and obtains (computes) the perceptual quality
we call perceived retinal speed—how fast something is moving across the visual field
when the eves are kept stationary!.

The remainder of this chapter will present a brief overview of the first models
of motion perception, and a very brief sketch of speed perception as the analysis of
outputs of linear filters, a point of view common in contemporary models of early
vision. These two sections are designed to provide an intellectual framework for the
two review chapters which follow. The first of those chapters covers the experimental
evidence concerning the type and characteristics of the first stages of motion percep-
tion and of the speed perception process. while the second chapter presents a more
detailed review of the most significant contemporary models of speed perception,

which in turn motivated the experimental work described later.

1.1 Basic Motion Perception

Visual motion (which will be referred to hereafter simply as motion) can be defined
as a change in the spatial structure of a visual display over time. How this definition
is interpreted depends on one’s perspective, however. From the perspective of the
world, visual motion is but the consequence of changes in the physical world, such

as the motion of objects relative to an observer, or the motion of light sources or

1T am explicitely excluding the perception of object motion in real world coordinates, as
most accounts of “real-world” object velocity perception start by assuming retinal speed
estimates. It is this earlier stage which this dissertation focuses on.

2
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occluders relative to a line of sight. This is in fact the definition of motion which
is behaviorally useful, and which perceptual systems are built to decode. Decode.
because while the source of the motion signal is most naturally expressed in terms of
objects and light sources moving through space, the interface between the world and
the perceptual system is a retina, which, like all measuring devices. loses information
about the causal nature of the events it is measuring. For example. human retinze
contain a few million photoreceptors which are basically sensitive to one thing and
one thing only—photons. There are different types of photoreceptors more or less
sensitive to different types of photons, but from an individual neuron’s perspective,
there is no such thing as motion—there is light and dark. The visual system’s task
is thus what is often called an “inverse problem®: given a set of photon landings on
the retina (or more precisely, given a set of photon absorptions by retinal neurons),
what, in the world ahead, is most likely to have happened? In other words, “what
in the world happened that I see before me?” A discussion of how this problem is
solved generally is clearly beyvond the scope of this dissertation. We will consider
instead how the visual system solves the smaller problem of “how fast on my retinze
is that object I see moving before me?” Note that while visual motion does not
require the motion of an object. and can be elicited by, for example. ego motion, this
dissertation will focus on the simpler problem of the translatory speed of objects in
an otherwise stationary world. Introspection is often as good place as any to start
a scientific enquirv. How might one decode motion information, for example how
fast something is going, based on the responses of retinal neurons, which can only
indicate whether they have just been hit by a few photons or many? Clearly the
number of photons a given neuron absorbs (related to the luminance of the stimulus
at that neuron’s corresponding location in the visual field) is not by itself useful in
telling us how fast an object is moving. However, if one can somehow pick up on the

fact that a relatively bright light source sends photons through the eye to one neuron

3
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(which is in a fixed relationship to a region of visual space) and then. after a given
delay, to a different neuron, located nearby on the retina (and thus corresponding to
a nearby region of the visual world), then one can say that it is likely that whatever
caused the bright spot on the retina in the first interval moved so that it later caused

the bright spot in the other location on the retina’.

1.1.1 The Reichardt-Hassenstein Model

This insight is at the heart of the first published model of motion sensing. the
Reichardt-Hassenstein model. The model as described by Reichardt (Reichardt.
1961) was designed to account for the physiological data observed in a set of insects,
notably the beetle and two fly species, Drosophila, and Musca domestica. It is helpful
to remember that the eves of these animals are composed of arrays of ommatidia. re-
ceptors with very well-defined receptive fields, almost pointlike in nature. The gross
physiological result the model addresses is that there are cells in the insect eyes which
respond best to motion of bars across their receptive fields in a specific direction. but
they respond poorly when there is no stimulus present or when the stimulus is moving
in the opposite direction from the cells’ preferred direction. In other words, the cells
are motion-sensitive (thev “prefer” motion), orientation-selective (they prefer spe-
cific stimulus orientations), and direction-selective (they prefer movement along one
direction over motion in the opposite direction). These facts about insect ommatidia
led Reichardt to formulate the model of motion detection depicted in Figure 1.1.

The simple Reichardt detector comprises two subunits, each subunit being built

2To be somewhat more rigorous, one can only conclude motion if one knows that the
world is not full of twinkling spots of light which go on and off randomly—Iluckily the visual
system made that assumption a long time ago (which is why twinkling “noise” appears to
be moving even when it is just twinkling, why television and cinema fool us so convincingly,
and why one can study motion perception without having to move physical objects around

all day long!).
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Figure 1.1: The Reichardt Model. A. A Subunit. The two receptors A and B are
indicated below their receptive fields. LP refers to the low-pass temporal filter. X
to the correlator. The correlator fires only if stimulus motion is along the preferred
motion indicated at the top. B. A pair of complementary Reichardt subunits can be
combined with a subtractive unit (-) to vield a detector whose output models the fly
optomotor response.

of two luminance contrast detectors (schematized as A and B in Figure 1.1) and a
correlator. The first detector is connected directly to the correlator. while the other

is connected to it via a-low-pass temporal filter.

When the detector is exposed to a stimulus at its receptor A at a time ¢, and then
at its receptor B at a time t+At (where the vector from A to B defines the correlator’s
preferred direction), the signal resulting from the activation of A correlates well with
that resulting from B'’s activation and the output of the multiplicator is high. The
response strength depends on the degree of correlation, which in turn depends on
the match between the interval At and the characteristics of the low-pass filter. If

on the other hand the motion is in the “null” direction (from B to A}, then the two
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signals are poorly correlated and the detector is not strongly activated.

Each subunit just described is matched to an subunit tuned for the opposite di-
rection of motion. This matched subunit has equivalent wiring but with the temporal
filter between the correlator and detector B as opposed to detector A. The output of
the two subunits is then subtracted, yielding an output whose sign (positive or neg-
ative) indicates the direction of motion. The Reichardt model is therefore inherenty
an “opponent” model of motion perception.

The unit as described fits all of the requirements set by the physiological data
which Reichardt meant to model. The two point-like receptors define an axis of
motion to which the detector as a whole is sensitive. Anyv component of motion
perpendicular to it will be invisible to the detector. and the response indicates the
direction of motion of the stimulus (with some caveats which will be discussed in

detail later).

The Barlow-Levick Model

Barlow and Levick (1965) were studying a different system, the rabbit retina, where
they too found cells which responded differentially to motion in one direction as
opposed to another. Their model, while based on a verv different preparation, and
expressed in slightly different terms, is functionally sirnilar to the Reichardt model.
Indeed, the schema they proposed contains two receptors, one directly wired to a
comparator, and one relayed to it via a delay line. The comparator is specified as
an instantiation of the logic gate AND-NOT (see fig 1.2). In the Barlow and Levick
model, the comparator fires in the presence of a change in contrast over receptor A
unless there was a change in contrast over receptor B at a time At earlier. Although
this might seem a somewhat complicated wiring diagram, it accounts for the fact
that the cells they recorded from. unlike the Drosophila cells, fired when presented

with static flashing stimuli as well as with stimuli moving in their preferred direction.

6
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If both detectors A and B receive simultaneous inputs. the “veto™ action of the B
pathway will not arrive at the AND-NOT gate in time to inhibit the excitatory action
of the A pathway. This detector will then be activated by flashing stimuli. just as

the rabbit retinal cells are (Barlow & Levick, 1965).

Preferred direction

-

N
(2

y
NOT-AND

|

Figure 1.2: The Barlow-Levick model of direction selectivity (adapted from Barlow
and Levick (1963))

1.1.2 The Elaborated Reichardt :Detectors

A feature of both the Reichardt and Barlow-Levick model is that they predict that
under certain circumstances, presenting periodic patterns on the receptors will cause
maximal firing indicating the direction opposite to the real direction of motion—
this is a form of aliasing, and like all aliasings, is due to the fact that there is a
discrete sample (in this case a spatial one). This surprising prediction has been
shown to be correct for fly eves, but it is not valid in the case of humans—there is

no speed at which continuously moving stimuli will be perceived by humans as going

7
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in the opposite direction (Hildreth & Koch. 1987)%. The basic correlator model
just described can be adjusted so as to eliminate this aliasing effect by modifying
the punctate nature of the receptive field, and instead use receptive fields of finite
extent, as done for example by Fermi and Reichardt (1963), Gotz (1965), Van Santen
and Sperling (1984. 1983).

This “elaborated Reichardt detector” can be shown to be equivalent two other
motion detector models, which come from a different computational heritage. the
motion detector by Watson and Ahumada (1983). and the motion-energy model of
Adelson and Bergen (1985)*. Both of these models (which will be discussed in detail
in Chapter 3) are based on the principles of linear systems analysis. Linear systems
are used throughout this dissertation, so a brief introduction will be given, to setup

some terminology and basic results.

1.2 Linear Systems

The general hypothesis upon which the use of linear systems in visual modeling is
based is that the behavior of some cells in the visual system can be modeled to a
first approximation as a linear filter with both spatial and temporal dimensions, so
that the response of a unit early in the visual processing stream can be modeled as
the convolution of the input (in space-time) with a linear filter which has a spatial
component (typically a bounded. oriented, bandpass function such as a Gabor func-
tion), and a temporal component (which empirical results argue should be lowpass or

bandpass). This convolution by filtering operators can be thought of as a weighted

3The only time when this occurs is when the stimulus is stroboscopic (i.e. sampled), as
in a projected cinematographic movie or under artificial pulsed lighting.

4Tt should be noted that this computational equivalence is true only regarding the time-
averaged responses—the dynamics of the detector responses can be quite different.

8
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sum of the stimulus contrast over the spatial neighborhood of the receptor and recent
history. Each cell, therefore, performs a spatially and temporally localized filtering
operation on the stimulus. Because of its spatial extent and temporal integration
property, a unit’s response is spatially and temporally imprecise—any given filter
response can be due to stimulus contrast at one of many location within the filter’s
spatiotemporal “receptive field”. These filters are assumed to cover the entire visual
field with overlapping spatial receptive fields. and have spatial and temporal tuning
functions which span the range of visibility. Furthermore. within the scope of this
dissertation, the output of these filters is assumed to be the sole input to the visual
system®. The process of speed perception is thus viewed as the analysis of these filter

outputs by the rest of the visual system so as to extract local image speed.

1.2.1 Why linear systems?

The power of linear systems analysis lies, not surprisingly, in the properties of lin-
earitv. A system is said to be linear if its response to compound inputs is additive.
If a linear system has a response R, to an input A, and a response Rp to an in-
put B. then it must be true that the system’s response to the compound stimulus
4+ B will be Ry.p = R4 + Rp. While this property may seem at first trivial, it
has a powerful consequence when combined with Fourier analysis. Fourier analysis
is a procedure by which any pattern can be decomposed into the sum of a set of
sinusoidal patterns. The response of a linear system to a pattern can thus be exactly
computed from the decomposition of the pattern and the responses of the system
to the component sinewaves. In general, if one knows the response of a linear sys-

tem to a set of basis functions (e.g. all sinewaves), one can predict the response of

5Extra-retinal signals such as eye movement information are ignored, and all the exper-
iments described throughout this dissertation are designed to minimize both their presence

and their use in processing.
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that system to any pattern. Thus the system is fully characterized by its response
to sinewave patterns. While this result is exactly true only for periodic patterns
over infinite extent and fully linear systems, predictions using this method degrade
gracefully as the assumptions of infinite extent and full linearity are replaced with
the realities of finite receptive fields and slight non-linearities. Furthermore, physio-
logical data (e.g. Movshon, Thompson. & Tolhurst. 1978) have shown that so-called
simple cells in visual cortex are to a first order linear. making linear systems analysis
appropriate for the study of early visual processing. Finally. as will be reviewed in
the next chapter, many psvchophysical data have been usefully analyzed within the
framework of linear systems.

It should be noted that the property of linear addition applies in the temporal
domain as well. so that the response of a system is the convolution in time of the
temporal filter with the temporal history of the input. This point is difficult to
illustrate in general but will be made clearer within the context of motion processing

below.

1.2.2 What do these filters look like?

Linear systems theory is a general theory. independent of any specific domain of
application. The filters used to model the early stages of visual processing, however,
are quite constrained by the data. The neuronal stage of processing which is widely
considered to be the input stage for speed perception is visual cortical area 17 (also
called V1, or visual area 1 (Zeki, 1969)). Cells in this area receive input from lateral
geniculate (LGN) cells which themselves receive inputs from the retinal cells. While
considerable processing occurs before V1, in humans this processing appears not to be

motion-specific. Thus within the context of this dissertation, V1 cells are considered

to be the first stage of processing.

10
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This section will present a brief review of the characteristics of these cells. both
in the spatial and temporal domain. Along the way. graphical representations of

the cellular or behavioral filtering characteristics will be presented to clarify the

exposition.

Spatial Profiles and Tuning Functions

V1 receptive field sizes depend on the eccentricity of the receptive field for that cell
(the position in the visual field to which the cell is sensitive. relative to the point of
fixation. equivalent to the position of the cell’s retinal afferents relative to the fovea).
Because of its central role in human vision, almost all of the work reported in this
dissertation focuses on central, or foveal vision. Foveal cortical cells have receptive
fields which have diameters on the order of 0.1 to 1 deg (Dao, 1994).

V1 cells are known to have two dimensional spatial receptive fields and most have
orientation tuning (Hubel & Wiesel, 1962). In order to apply the linear systems
framework just described, one needs to know the cells’ spatial frequency tuning—
that is. what is the amplitude of the cell’s response after presentation of a sinewave
pattern as a function of the grating’s spatial frequency®. Once we know how a cell
responds to sinewave gratings (its amplitude and phase lag), if it is linear. one can
in theory compute its response to any pattern. Given the orientation tuning just
mentioned and the fact that the cell response depends on the temporal history of the
stimulus, this tuning cannot be measured in isolation. However, it can be measured

under conditions which minimize or control for the effect of these other variables.

6Gratings are two-dimensional patterns modulated in one direction by a sinusoid and
not modulated in the orthogonal direction. They have a spatial frequency, corresponding
to the period of the sinusoid. and expressed in cycles per degree of visual angle (cpd). If
a grating is moving, it is defined by its velocity along the axis of modulation, expressed in
degrees of visual angle per second (°/sec), or by the rate of modulation at a point in the
visual field (temporal frequency), expressed in Hertz (Hz).

11
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The spatial frequency tuning of cells is generally measured for gratings which have
the cell’s preferred orientation (that which yields the largest response), and for fixed
stimulus durations.

The field of spatial vision is too broad to review here, but a general feel for
the spatial tuning functions and the corresponding filter shapes is easy to illustrate.
Figure 1.3 shows a typical spatial frequency tuning curve for a set of six striate cells
(DeValois, Albrecht, & Thorell, 1982). It shows that the cells responds best to stimuli
with spatial frequencies in an intermediate range, and respond poorly or not at all to
either high or low spatial frequencies. This type of tuning function can be used (along
with phase information) to derive a filter shape which will yield this kind of behavior.
Such a filter must clearly be bandpass in SF. Various proposals have been made for
mathematical models of this filter, but a commonly used one is the Gabor function.
A Gabor is a sinewave modulated by a Gaussian, as illustrated in the bottom panel
of Figure 1.4. The sinewave is the most important factor in determining what the
peak spatial frequency of the cell will be, while the Gaussian falloff determines the
bandwidth—an infinitely wide Gaussian would produce a perfect sinewave detector,
with infinitely narrow tuning, while an impulse function envelope would produce a
broadly tuned analyzer.

The Gabor just described is a one-dimensional function. Receptive fields are
two-dimensional and orientation-tuned. This is usually modeled by modulating the
sinewave carrier with a two-dimensional Gaussian. The orientation of the sinewave
function yields the preferred orientation of the modeled receptive field, while the

falloff of the Gaussian determines the receptive field size (see Figure 1.5).

Temporal Profiles and Tuning Functions

What are the temporal properties of V1 cells? Given that the general topic under

study is speed perception, it should be clear that the answer to this question will
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Figure 1.3: Spatial frequency tuning of six striate cells recorded during the same
electrode penetration. Smbols indicate the contrast sensitivity of each cell (the re-
ciprocal of the contrast required to reach a constant response criterion) as a function
of spatial frequency; the curves were fitted by eye. Note the variation in peak tuning,
bandwidth and sensitivity for this sample of cells (all of which pick-up from the same

retinal locus) (DeValois et al., 1982).

have profound impact on how speed can be computed from the output of these cells.
One method for obtaining cellular tuning functions is to measure the reponse of a
cell to a stimulus to which it is sensitive (e.g. using its preferred spatial frequency
and orientation), and modulating the stimulus with a sinusoidal temporal modula-
tion function (thus creating a counterphase grating), recording the cellular response
as a function of the modulation frequency. As will be reviewed in detail in the next
chapter, both the physiological and psychophysical data seem to classify the tempo-
ral responses of V1 cells as one of two kiﬁds, low-pass and bénd—pass, as illustrated

in Figure 1.6. A low-pass cell shows a temporal tuning function which has a high
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Figure 1.4: Explanation of a Gabor in terms of the carrier sinewave and the Gaussian
envelope. The top panel depicts a sinewave function. The middle panel depicts a

Gaussian function. The third panel depicts the convolution of these two functions,
the Gabor.
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Figure 1.5: An oriented bandpass filter as a two-dimensional Gabor: The top panel
presents a two-dimensional sinewave, the middle panel a two-dimensional Gaussian,
and the bottom panel a two-dimensional Gabor. The orientation of the.sinewave
defines the orientation of the filter.
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temporal frequency cutoff (the dynamics of the cells are not fast enough to keep
up with very rapidly changing stimuli. so very high temporal frequency stimuli are
equivalent to mean-field (blank) stimuli), and the sensitivity of the cell increases as
the temporal frequency is decreased, and stays constant down to stationary (0 Hz)
stimuli. This means that these cells give sustained responses to the onset of station-
ary stimuli, explaining why these cells are also called “sustained” cells. Band-pass
cells, on the other hand, have tuning functions which are more similar in general
shape to the spatial frequency tuning. Figure 1.6 shows tuning curves from three V1
neurons, including lowpass and bandpass types.

A note should be made regarding the use of the terminology lowpass and band-
pass. In the physical sciences, a lowpass filter is one which transmits a non-null
proportion of any DC input. In the visual domain, this would correspond to a mech-
anism or cell which responded to a completely stationary stimulus. Due to retinal
adaptation, stabilized images are invisible to the post-retinal processing stages. It is
therefore impossible to test (at least in vivo the formal definition of lowpass behavior
for a visual cell. The term lowpass will therefore be used to refer to cells or mecha-
nisms who give significant response down to very low temporal frequencies, such as
the lowest ones which a subject viewing the world might see, given normal eve drift
behavior. Similarly, bandpass filters are formally defined as yielding no response
outside of a well-defined range. As is clear from the tuning functions in Figure 1.6,
within the domain of visual motion, bandpass cells merely have a preferred temporal

frequency range, and no absolute cutoff.

1.2.3 What are these filters good for?

So far, the spatial and temporal filters have been viewed as independent characteris-

tics of V1 cells. It is important to remember that each of these is but an aspect of the

16

Reproduced with permission of the:copyright:owner. Further reproduction prohibited without permissionyyapnw.manaraa.com



) Expt. 56 Cett 11

Bt % it 29
A
Y R AP | P 18
(1} S SR N PP T - 7
i L L 1 d
05 ] 2 4 8 16
: Expt. 45 Ceil 3
o -B -------------------------
c
g
< =
g 05 |-—=-- - z
= =3
= w
3
-3
Z Ql-~rrcrrcr e cc e e =
1 L 4 oL b 4
05 1 2 4 8 16
[ PSR QEPEPI N
¢ 50
[ B ettt Gt 185
Expt. 66 Cell 7
L+ T e T 13
1 L A -t 1
05 ] 2 4 8 16

Temporal frequency {cycles/s)

Figure 1.6: Temporal frequency tuning curves obtained from three neurones in
Macaque visual cortex (reproduced from Foster et al. (1985)). The top two would
be called band-pass using our terminology, while the bottom one would be called
low-pass.

behavior of the entire filtering operation. In fact, cells are tuned to a variety of di-
mensions simultaneously, including spatial and temporal frequency, spatial position,
and color. The complete tuning function of a cell is therefore at least six-dimensional.
For the sake of speed perception, however, only two dimensions are needed: spatial
frequency tuning along the preferred orientation of the cell, and temporal tuning.
The filter sensitivity of the cell can therefore be efficiently represented in a space-
time diagram, as in Figure 1.7, where spatial position is along the horizontal axis,
time is down the vertical axis, and the grey-level indicates the response of the filter
to that space-time coordinate, with dark greys representing inhibitory responses, and

light greys representing excitatory responses.
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Figure 1.7: A separable spatiotemporal impulse response function. Reproduced from
(Adelson & Bergen, 1985).

The unit just described has what is called a spatiotemporally separable impulse
response. Its response can be exactly characterized as the product of a spatial func-
tion with a temporal function. There is no interaction between these two dimensions.
While it is clearly easy to model, it suffers a significant flaw when it comes to motion
perception: its response to two gratings moving in opposite directions at the same
speed will be identical. Thus it is incapable of determining the direction of stimu-
lus motion. As will be seen in the next chapter, the standard solution has been to
use combinations of these simple units to build more complex units which are not
spatiotemporally separable, and can thus be motion sensors. What about speed, the
topic of this dissertation? We know that the basic imits just sketched are spatially
bandpass, and temporally tuned as well. Thus the unit responses will depend on the
stimulus’ spatial and temporal spectrum. If a stimulus spectrum overlaps almost not
at all with a unit’s tuning functions in either dimension, the unit will not respond to
that stimulus. If the two are well matched, however, the unit will respond. It should
be clear then that the strength of the response is directly related to, among other
things. the speed of the stimulus (since given a stimulus with a fixed spatial structure,
the temporal spectrum will depend only on the stimulus speed). This dependence

is not simple. however. Response strength depends on the stimulus’ “physiological

18
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spectrum”*, which varies with such factors as contrast and color. which have no rela-
tion to speed. It depends also on the filters’ tuning characteristics. which vary across
cells and which are not directly observable. Understanding speed perception is thus
understanding what the nature of the underlying filters is. and how the properties

of these filters can affect perceived speed.

1.3 OQutline of the thesis

This chapter outlined the fundamental theoretical assumptions regarding how vi-
sual signals are processed by the first stages of the motion processing svstem, and
sketched the general framework for speed perception based on the output of this first
stage of filters. Two general aspects of this process are yvet unspecified. The first is
the characteristics of the filters, both their number (along both the spatial and tem-
poral dimensions), and their tuning properties. These tuning properties include the
receptive field size, the temporal integration window, and their spatial and temporal
frequency tunings. The next chapter will present a review of the existing psvchophys-
ical literature which bears on these questions. The second general area which needs
to be specified is how, from the output of these filters, the visual system computes
retinal speed. Chapter 3 will present the existing models of speed perception, and
compare them. The next five chapters present results from experiments which tested
various aspects of speed perception. The first experiment concerns the requirement,
stated implicitely at least by most models of discrimination, that speed discrimi-
nation is affected by contrast levels, a requirement which previous researchers have
found not to be met. The next two experimental chapters report studies of the spatial

and temporal integration properties of the speed mechanism respectively. Chapter 7

"By physiological spectrum is meant the physical spectrum of the stimulus, filtered by
the physiological optics and photoreceptor tuning functions.
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reports the results of an experiment which tested the influence on perceived speed
of selective adaptation of the temporal low-pass mechanisms, which is predicted by
many models of speed perception. The last experimental chapter. Chapter 8 reports
on experiments focussing on the ability of the visual system to use information from a
variety of spatial scales in computing speed. Chapter 9 summarizes the new require-
ments which a speed model needs to account to be comprehensive in its coverage of
the data and presents a modified model which aims for a somewhat broader scope
than the previous models. Finally, the Conclusion presents a summary of the results
presented in the dissertation and some closing comments.

Before starting on the main content, a note on terminology. In this chapter, the
words filters, channels, cells and mechanisms have been used interchangeably. Each
has a specific meaning, grounded mostly in the framework of different disciplines
(signal processing, psychophysics, physiology). Filters refer to “black boxes™ which
take a one-dimensional input signal and produce an output which is a scaled version
of the output, with the scaling a well-specified function of the properties of the input.
Cells refer to neurons, whose behavior one can only estimate within the context of
a living brain. exposed to specific visual stimuli. That the neuronal firing rate after
presentation of visual stimuli can be viewed as the response of a spatiotemporal
filter is the linking step which bridges psychophysics alnd physiology. Channels are
theoretical constructs from psychophysics, best likened to sets of units which share
a tuning property and tile the visual field—thus one may refer to two temporal
channels. and six spatial channels. What is meant by this is that at each retinal
location, the visual input is processed in parallel by units whose temporal tuning
functions can be well categorized as fitting one of two profiles, and whose spatial
tuning functions can be well-categorized as fitting one of six profiles. In the following
chapters, starting with the reviews of psychophysical data and of the models, the

terms appropriate to each study will be used. The fact that so many words mean
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more or less the same thing is an encouraging sign. as it seems to indicate that

the various methods of study of visual processing must be dealing with the same

“things.”
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Chapter 2

Speed Perception and

Spatiotemporal Channels

This chapter presents a review of the psvchophysical and physiological data which
characterize the filters described in the Introduction. The little reliable data available
on speed perception per se will also be reviewed. The former set of data describes
the building blocks of the computational models of speed perception, while the latter
define the expected behavior of those models. Detailed presentation of the speed
models is deferred until the next chapter.

As described above, speed perception is assumed to be recognition of patterns of
of activity of an array of spatiotemporal filters. Given the historical lack of interest
in speed perception. it is helpful to point out that these filters are also believed to
underlie other low-level visual tasks, such as static spatial vision and other aspects
of motion perception. Thus the data on the spatial properties of the filters comes
from the literature on spatial pattern detection and discrimination, and the temporal
tuning functions come from speed and other temporal processing experiments.

This said, it is important to remember when reading about the experiments

described in this chapter that in most cases the results obtained may or may not
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apply to the speed mechanism. Indeed. the psychophysical characteristics of the
speed perception process may or may not be the same as those of. e.g.. the direction
perception process, studies of which are used to infer filter characteristics. The
extent to which the speed mechanism shares characteristics with the other early
visual perceptual mechanisms is the subject of some of the experiments described in

the later chapters.

2.1 Spatial Characteristics of the filters

The review of the filters used in speed discrimination will start with their spatial

characteristics. These include number, receptive field size, orientation tuning, and

spatial frequency tuning.

2.1.1 Receptive Field Size

Estimates of the spatial extent of the visual input processed by an individual analyzer
come from both physiology and psychophysics.

Physiological data is the simpler to analyze in this case. since it is obtained from
single-neuron recordings. In the landmark study of Hubel and Wiesel (1959. 1962),
the response of a neuron is measured for stimuli of increasing sizes. The smallest
size which elicits the largest response of the neuron is defined as the receptive field
size for that neuron (at least cells which have no inhibitory surround). Recently,
this simple picture of the receptive field of cells has been challenged by physiological
recordings finding that the behavior of cells can be influenced by stimuli well outside
the “classically defined receptive field” (Gilbert & Wiesel, 1990; Gilbert, 1993; Das
& Gilbert, 1995; Zipser, Lamme, & Schiller, 1996).

Psychophysical data has been obtained both using stationary and moving dis-

plays. One technique used consists of measuring the detectability of stimuli as a
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function of their size. As the size of the stimulus grows. the detectability increases.
A key aspect of this relationship however is that this increase in detectability is at first
relatively rapid, and slows down for larger stimulus sizes. This is interpreted to mean
that during the early phase of the increase in detectability, the signal is integrated
both within the detecting receptors, using very efficient “synaptic™ or “physiological”
summation, and across receptors, using the less efficient. inter-receptor probability
summation! (Robson & Graham, 1981; Olzak & Thomas. 1986: Anderson & Burr,
1987). Once the stimulus size exceeds the receptor size. within-receptor integration
vields no improvement, and the integration which remains is probability summation.
The point at which the rate of integration changes can be viewed as one definition of
the receptive field size?. The size estimates for receptive fields vary drastically with
eccentricity (e.g. vanEssen, Newsome, & Maunsell, 1984), but this dissertation limits
its scope to foveal vision, so these changes will not be described. A further source of
change in receptive field size is the stimulus. While the earlier psychophysical work
on estimating filter sizes used filled spots of light (Blackwell, 1946), later work using
sinewave gratings showed that receptive field size depends on the stimulus spatial
frequency (McCann, Savoy, & Hall, 1973; Hoekstra. Goot, Brink. & Bilsen, 1974;
Howell & Hess, 1978; Quinn & Lehmkuhle, 1983; Tootle & Berkley, 1983), with most
estimates of the receptive field size at about 1.5-2.5 cycles (thus estimates for a 1 cpd
grating correspond to 1.5-2.5 degrees of visual angle).

Anderson and Burr (1987) pointed out that this estimate would indicate that

gratings of 0.025 cpd (which are visible) would be detected by units with receptive

1Probability summation is less efficient than physiological summation because a given
receptor output is necessarily noisier than the component signals within a receptor.

2Estimates of receptive field sizes depend on the stimulus used, on the recording tech-
nique, and in some cases on the configuration of the stimulus over a large area of visual

space.
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fields of 60-100 deg, far exceeding the largest field sizes recorded electrophysiologi-
cally. Using moving (8 Hz) gratings at a variety of spatial frequencies (from 0.01 cpd
to 30 cpd), they performed a motion detection task, measuring the minimum con-
trast needed for detection as a function of the stimulus size. By plotting the obtained
contrast sensitivity as a function of stimulus area, they were able to record the size at
which the integration exponent changes from indicating within-receptor integration
to cross-receptor integration. Their results are in agreement with the previous data.
except that for low spatial frequency stimuli. the receptive field size corresponds to
smaller fractions of the stimulus SF (down to approximately 0.07 cvcles for 0.01 Hz
stimuli), in good correspondence with the maximum receptive field sizes reported
physiologically (Dao, 1994). To summarize, psychophysical experiments appear to
vield estimates of receptive field sizes which are on the upper end of those measured
physiologically, since V1 cells in the fovea have receptive field sizes on the order of a

fraction of a degree of visual angle, and they have approximately circular shapes.

2.1.2 Orientation Tuning

While there is considerable data available on orientation tuning of motion sensors, it
can be summarized for the purposes of speed percept.ion-as follows. Physiological data
indicate that motion-sensitive units in the first visual cortical area are orientation-
tuned, and that orientations are roughly equally sampled. Computational models
of spatial vision such as Wilson, McFarlane, and Phillips (1983), use orientation
channels with bandwidths at half-height on the order of 30°, consistent with both the
physiological data and psvchophysical reports (Mostafavi & Sakrison, 1976; Thomas
& Gille, 1979). Physiological evidence argues that the orientations are somewhat
densely sampled, with neighboring cortical columns having preferred orientations

separated by 5-10° (Hubel & Wiesel, 1974)
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2.1.3 Spatial Frequency Tuning

An important aspect of spatial frequency channels in the context of speed perception.
as will become clear in the discussion of the various computational models of speed
perception (Chapter 3), is what the number of these channels is. and what their
spatial frequency tuning curves are like. Luckily, there has been a considerable
amount of work done on the processes responsible for of spatial pattern perception.
and general consensus can be found regarding these two issues.

The number of filters which process a given stimulus is clearly large, given that at
least a set of filters is necessary at each location. for each direction. As is usual. the
number and shape of spatial channels is evaluated experimentally at a given orienta-
tion (e.g. vertical) and at a given location (usually the fovea), and then extrapolated
from there to the entire visual field and to all orientations®.

How are tuning properties of channels estimated? Reviewing this topic is best
left to others (Olzak & Thomas, 1986; Watson, 1986), but a brief summary of the
techniques and basic results is useful to understand the subsequent chapters. The
discussion up to this point has focused on filters and channels as purely linear systems.
Perception. however. is nonlinear, especially at low stimulus intensities. For very low
stimulus intensities, the stimulus is invisible. For the stimulus to be detectable, it has
to elicit a response in a channel which is higher than the threshold for that channel.
What that threshold stimulus energy is for a given stimulus depends on the match
between the tuning function of the channels and the stimulus—if a channel is very
sensitive to that stimulus, a relatively low stimulus energy will result in detection. If
all the channels are blind to that stimulus, no amount of stimulus energy will result

in detection (e.g. ultraviolet light and the human visual system). Thus by measuring

3This extrapolation is inaccurate in the peripheral visual field, but as mentioned earlier,
we are focusing on foveal vision.
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the physical stimulus energy needed for detection. one can infer the tuning function
of the set of channels as a whole*. \arious techniques can then be used to further
identifv the channels which are responsible for this “envelope” sensitivity, as well
as characterize their individual sensitivity curves. Foremost among these is the use
of discrimination thresholds. Discrimination refers to the ability of an observer to
reliably tell two stimuli apart. Assume that a given stimulus is at detection threshold,
so that it “barely” excites one channel. For the subject to be able to distinguish

" between this stimulus and another at detection threshold. the two stimuli have to
be exciting different channels. Thus by measuring the discrimination threshold for
a stimulus as a function of the, e.g., spatial frequency of a second stimulus, one
can partially determine the tuning functions of the (in this case) spatial frequency
channels.

To review the terminology used: detection threshold is the physical stimulus in-
tensity which results in reliable detection. Discrimination threshold is the minimal
separation between two stimuli which affords reliable discrimination by an observer
(detection and discrimination thresholds are quantified by an index of sensitivity d'
index (Green & Swets, 1966)). Sensitivity refers to the relation between stimulus
energy and detectability either by an organism as a whole, or by an individual chan-
nel. Threshold and sensitivity are inversely related—a high sensitivity corresponds
to low thresholds, and vice versa.

Many methods have been used to identify channels and channel shapes. Two will

be discussed briefly (adaptation and subthreshold summation), since they allow the

41t should be pointed out that the theoretical views of channels used here, while it is
the standard psychophysical one, is not devoid of assumptions. Thus while channels can be
related to cells, they should always be remembered as theoretical constructs, the properties
of which are most probably only grossly mirrored by reality. For example, the properties
of fixed thresholds and linear summation within a channel are likely not exact in either

cells or behavior
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introduction of concepts which will be useful in understanding the later experimental

chapters.

Adaptation

In an adaptation study, the sensitivity function is measured as described above to
establish a reference, against which the effect of diminishing the output of a small
number of channels is measured. This diminution in channel output is obtained
by having the observer view a given stimulus (e.g. a 3 cpd grating) for a relatively
long period of time before measuring the sensitivity function anew. When such an
adaptation is performed, the sensitivity function generally shows a dip for stimuli
identical or similar to the adapting stimulus. The physiological mechanism underly-
ing this loss in sensitivity is still ill-specified, but it is an empirical fact that channel
responses decrease after their adaptation. This is useful because adaptation of a
channel affects the entire sensitivity range of the channel (thanks to the principle
of univariance (Naka & Rushton, 1966)), not just for stimuli whose characteristics
match those of the adapting stimulus exactly. Thus. if a channel is very broadly
tuned and is the most sensitive channel over a large part of its bandwith, then adap-
tation of that channel will affect the organism’s sensitivity over a large range. If
the channel is either narrowly tuned or if it is not the most sensitive over a large

range. then detection sensitivity will only be affected over a small range of stimulus

parameters.

Subthreshold summation

Summation studies also use use the principle of univariance of psychophysical chan-
nels. The output of a channel can be thought of as proportional to the number of
stimulus energy quanta which have been absorbed by the channel, with the channel

sensitivity defining the relationship between the nature of the stimulus energy and
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the likelihood of quantum absorption by the channel. Channel output only vields a
response, however, if it is above a threshold (which corresponds to a certain number
of quanta). Thus whether two spatial frequencies are processed by the same channel
can be tested by measuring the detection threshold for each spatial frequency. and
then testing whether the presence of one spatial frequency at subthreshold contrasts
affects the detectability at the second spatial frequency. If it does, then both stimuli
- are processed by the same channel (as the quantal numbers add within the chan-
nel). The amount of subthreshold summation between one grating and another is
a further indication of the relative sensitivity of that channel to those frequencies.
Subthreshold summation does not occur across channels because the output of each

subthreshold channel is indistinguishable from noise.

Summary of Spatial Frequency Filter Shapes

Methods such as those just described as well as other methods including masking
(Stromeyer & Julesz, 1972; Legge & Foley, 1980), two-pulse summation and others
(see review in Olzak & Thomas, 1986) have found that spatial frequency channels
are bandpass, with bandwidth at half-height of between 1 and 2 octaves. To tile
the spatial frequency contrast sensitivity function thus requires a fairly large number
of channels, with for example the models of Wilson et al. using at least 6 channels,
spaced approximately one octave apart (more channels might exist—psychophysical

techniques only allow the setting of a lower bound).

2.1.4 Summary of Spatial Filters

The various techniques above have mostly converged on a fairly noncontroversial
view of analysis by spatial filters. These filters have receptive fields on the order of

a fraction of a degree in diameter depending on the SF tuning, are orientation tuned
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with orientation bandwidths of about 30°. and have narrow spa\tial frequency tuning.
thus tiling the fovea, the 360° of orientations and spatial frequency space. Spatial
frequencies up to 60 cpd are processed by a set of mechanisms with fairly constant
bandwidths (proportionally), with a half-height bandwidth estimated to be between
1 and 2 octaves depending on the study (Olzak & Thomas. 1986). At least six such
channels are needed to account for the available data. Physiological evidence. not

surprisingly, does not show segregation of best spatial frequency into any discrete set

of clusters.

2.2 Temporal Characteristics of the filters

As can be seen in the preceding section, the spatial channels are fairly well character-
ized by a relatively large number of narrowly tuned bandpass filters®>. The study of
the temporal channels is much less simple to summarize, because of fundamental rea-
sons having to do with the shape of the sensitivity functions (as will become clear),
because of methodological problems which will be described in detail, and because
of the technical difficulties associated with carefully controlling moving stimuli with
display technology with much more “information bandwidth” in the spatial domain

than in the temporal domain.

2.2.1 Filter number and shapes

While in the spatial domain, adaptation to a given spatial frequency results in

changes in sensitivity for a restricted range of spatial frequencies at and around

50ne should remember that this characterization is mostly based on the use of foveal,
stationary, luminance-defined displays under photopic lighting conditions, and that gen-
eralizing beyond this domain is fraught with risks. Luckily such a generalization is not

needed for this dissertation.
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the adapting frequency (Blakemore & Campbell. 1969). the results in the tempo-
ral domain indicate much broader bandwiths. The range of temporal frequencies
to which humans are sensitive depends on aspects of the stimulus such as contrast
and size, but extends from stationary stimuli up to 50-70 Hz. It should be noted
again that absolutely stationary stimuli (for example. as obtained by using opti-
cal apparatus affixed to the cornea which stabilizes the stimulus on the retina) will
quickly result in large decreases in sensitivity (Kelly. 1979; Tulunayv-Keesey & Jones.
1980) The first studies explicitely testing the number and bandwidth of the tempo-
ral channels (Smith, 1970, 1971) report that after adaptation to sinusoidal full-field
flicker, the temporal contrast threshold is elevated for a broad range of test temporal
frequencies. Since then, many different psychophysical tasks have been used to deter-
mine the minimal number of channels required to explain human performance, and
their respective sensitivity functions. Additional adaptation studies (Smith & Edgar,
1994), masking studies (Pelli, 1981), threshold discrimination experiments (Watson
& Robson, 1981) and others (see a review in Watson, 1986) seem to converge on
requiring between two and four channels to fit the data. When two channels are
invoked (e.g. as in Smith & Edgar. 1994), one has a relatively low-pass tuning func-
tion, and one has a more band-pass tuning function. It should be noted however that
these two functions must necessarily overlap within the ranges of temporal frequen-
cies at which TF (or speed) discrimination is possible, since discrimination requires
the output of two mechanisms at least. When more channels are invoked (e.g. Man-
dler & Makous, 1984; Wilson & Gelb, 1984; Lehky, 1985; Bowne, McKee, & Levi,
Personal Communication), the additional channel(s) are proposed to be band-pass,
providing sensitivity especially in the high TF range. Finally, Jackson and Weich
(personal communication) report evidence for three or maybe four channels using
masking speed discrimination experiments. Examples of fairly typical filter shapes

are depicted in Figure 2.1
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Figure 2.1: The Alpha functions hq (solid line) and k, (dashed line) used by Watson
(1986).

2.2.2 Temporal Integration Window

An additional measure of the temporal properties of the filters is what can be called
the temporal integration window. It is the tempofal eéuivalent of the spatial recep-
tive field, the minimal duration which must separate two events so that the response
of the filters to the second event is independent of the filter response to the first event.
When two events (stimuli) are closer together in time than this minimal separation,
the two events interact within the filter. The linear nature of the putative filters (as
discussed in the Introduction) means that the nature of this interaction is assumed
to be strictly linear. Thus the total stimulus response is a linear combination of the
responses to the two individual stimuli, weighted by the amplitude (positive or nega-

tive) of the temporal impulse response function. The temporal response function is,
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by definition, the function which specifies the effect of a second impulse stimulus on
the output of the filter which has been exposed to a first impulse stimulus at time
t = 0. The region of time where the temporal impulse function is positive identi-
fies times at which a second stimulus would result in an increased output compared
to if the first stimulus had not been presented. while the region of time where the
temporal impulse function is negative identifies times at which a second stimulus
would result in a decreased response. Thus positive and negative lobes in a temporal
impulse function are the temporal equivalent of the excitatory and inhibitory spatial
subunits within a receptive field (see Figure 2.1). The two functions used by Watson
(1986) extend over 90-140 msec respectively. Those used in Watson and Ahumada

(1985) are somewhat briefer, extending only 80 msec.

2.3 Spatiotemporal Separability

The spatial and temporal filters have so far been presented as independent mecha-
nisms. An important question regards the relationship between the spatial filtering
operation and the temporal filtering operation. This question can be asked at two
levels. At the first level. the question is whether the spatial and temporal functions
are separable—whether the filter response is simply the convolution of the spatial
filtering function by the temporal filtering function. As will be clear in the next chap-
ter, most models of speed perception assume such a separability in their first stages
of processing. The second question is whether the spatial and temporal frequency
tuning functions of cells or of individuals are independent. A true “speed-tuned”
mechanism would answer this question in the negative, since for such a cell the best
SF would depend on the TF and on the cell’s speed tuning. Obtaining psychophys-
ical data on this topic is especially difficult, since, as mentioned earlier, to identify

a temporal channel one must fix the spatial properties of the stimulus, and vice
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versa. There is some evidence from the physiological literature that \'1 cells have
independent SF and TF tuning functions, however: Foster et al. (1985) and Holub
and Morton-Gibson (1981) found that the cells they investigated had indepedendent
SF and TF tunings in Macaque and cat respectively.

Recently, Schrater, Knill, and Simoncelli (1997) demonstrated using noise stim-
uli that in a translation detection task, observers were more sensitive to stimulus
configurations which had stimulus energy aligned in a single velocity plane (in other

" words corresponding to a single speed) rather than stimulus configurations which had
stimulus energy scrambled away from this plane (corresponding to several speeds).
Schrater et al. (1997) concluded from these experiments that translation detection
is performed by velocity-sensitive units. such as those described in Simoncelli and
Heeger (1997). Related recent work from Reisbeck and Gegenfurtner (1997) appears
to provide further evidence from the orientation of just-noticeable-difference shifts
in spatiotemporal space for the existence of speed-tuned (as opposed to SF-tuned or

TF-tuned) mechanisms in speed perception.

2.4 Speed Psychophysics

Having reviewed the status of spatial channels and tempbral channels, one may won-
der where hypothetical “speed channels” would fit with respect to these “orthogonal”
dimensions of SF and TF. The relationship between temporal frequency discrimina-
tion and speed discrimination is subject to a great deal of debate, due to a set of
apparently conflicting results regarding the effect of contrast on speed and tempo-
ral frequency perception. This section will review this literature and attempt to
svnthesize its main results.

The first result on the relationship between contrast and speed perception is the

report by Thompson (1982) that grating contrast can have profound effects on the
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perception of grating speed. Thompson measured. using a matching technique as well
as a magnitude estimation technique, the perceived velocity of gratings of various
contrasts relative to the velocity of a fixed-contrast grating. His displays used 1. 2.
4 and 8 cpd gratings, with TFs ranging from 1 to 16 Hz. The contrast range he
covered spanned the 4.5%-25% range. His main conclusion was that low-contrast
gratings generally appear to move slower than high-contrast gratings. This effect
was greatest (40% slowdown in perceived speed) for slow gratings. and reversed at
high TFs (8 Hz and above). Importantly, the effect is independent of grating SF.
An important conclusion one must draw from this result is a methodological one—
since apparent contrast affects perceived speed. it is important when testing speed
discrimination that the apparent contrast of the stimulus not covary with speed. This
is especially significant when testing at high TFs, since due to the falling contrast
sensitivity function at high TFs, small changes in stimulus TF will yield large changes
in apparent contrast, when the stimulus contrast is kept constant. We will return to
this point later. Thompson (1982) explained his data by sketching out a preliminary
two-channel model of velocity computation, where at low TFs, changes in stimulus
contrast would affect the output of a “fast” channel more than that of a “slow”
channel, thus vielding an decrease in apparent velocity. This sketchy model is not
considered in greater detail because it does not make explicit the computational
mechanism by which speed is computed, nor explain much data.

In apparent contradiction with this result is the important report by McKee,
Silverman. and Nakayama (1986) which showed that observers are able to make
precise speed discrimination even in conditions where the contrast, spatial frequency
and temporal frequency were randomized across stimuli. McKee et al.’s data touch
on two separate issues, which will be described in turn. The first, the major point of
the paper, has to do with the preeminence of velocity coding over temporal frequency

coding. The second has to do with the apparent conflict between the McKee et al.
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data and the Thompson data.

2.4.1 The status of speed perception relative to that of tem-

poral frequency perception

It is worth reviewing the experimental design and major results of the McKee et al.
(1986) paper. In one experiment, observers performed a speed discrimination task
with displays where the speed was chosen from one of five velocities around a mean
velocity, and observers were to indicate whether a given stimulus was faster or slower
than the mean speed of the stimuli seen so far. While the feedback to the user was
based on the speed of the stimulus, the spatial frequency of the stimuli varied over a
range of up to 1.6 octaves (with the temporal frequency varying over the correspond-
ing range). The results indicate that the Weber fraction for speed discrimination was
basically unaffected by the randomization of the spatial and temporal frequencies in
the display. If the perception of speed were the result of a computation based on an
first-stage estimate of temporal frequency, then the jittering of temporal frequency
should have had drastic effects on discrimination performance, effects which were not
found. Furthermore, the point of subjective equality (i.e. the criterion point used
by the subjects) was not significantly affected by the spatial or temporal frequency
variations, arguing again that the sensory variable which the subjects responded to
was indeed velocity and not spatial or temporal frequency. In a control experiment,
McKee et al. (1986) tested the ability of observers to make temporal frequency dis-
criminations with the same stimuli (thus asking the observers to discount changes in
speed). Interestingly, performance was worse than that for speed discrimination for
one observer, but equal to that for speed discrimination for another. To determine
whether the observers were using estimates of velocity to compute temporal fre-

quency, they repeated the TF discrimination task with counterphase gratings, which
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offer no velocity signal (due to the opponent nature of motion processing. (Levinson
& Sekuler, 1975; Adelson & Bergen, 1985: Van Santen & Sperling. 1984)). In this
condition, TF discrimination thresholds were significantly impaired. McKee et al.

(1986) conclude from these data that:

What our results show is that, for briefly presented targets, this temporal
[frequency] signal is so tightly embedded in the neural machinery for
velocity that it cannot be extracted from the velocity signal with the

same precision as the velocity signal itself.

This first conclusion of McKee et al. (1986) has been challenged when extended to
different stimulus characteristics. For example, Smith (1987) has used longer dura-
tion stimuli moving at a range of velocities (4 to 24 deg/s). His results indicate that
unlike in the McKee et al. (1986) experiments, randomization of spatial frequency
can have drastic effects of velocity discrimination. In a later experiment, Smith and
Edgar (1990, 1991) have shown that not only can random changes in temporal fre-
quency affect speed discrimination performance, but random changes in speed can
also affect temporal frequency. Smith and Edgar’s major conclusion is that this lack
of separability (the fact that affecting one variable influences the perception of the
other) argues that temporal frequency is available as a “raw” perceptual attribute,
rather than derived from velocity estimates. In general, it appears that temporal
frequency can be estimated without first estimating velocity, for example when using
long duration stimuli. as McKee et al. (1986) acknowledge. In my own experience,
the subjective impression of the task can shift dramatically depending on the stimu-
lus configuration. Even with a constant duration, if the spatial extent of the stimulus
is of the same spatial scale as the spatial period of the stimulus or smaller, then the
percept is of “faster or slower flicker” rather than “faster or slower motion.” This

should not come as a surprise. Clearly, the speed of object motion is, like every
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other aspect of the world, computable by a variety of algorithms and methods. each
of which has a range of applicability. For very slowly changing stimuli. such as the
position of the sun (or stars!) in the sky, motion sensors in the early visual pathway
are not going to provide very reliable data, and cognitive strategies and reference
to external timing devices will be more accurate. Without going to such extremes.
it appears logical that the efficient computation of speed by low-level motion mech-
anisms is limited to a behaviorally relevant range, especially considering the fact
that the same motion system is also responsible for other tasks such as direction
discrimination, grouping and segmentation, etc.

Regardless of the “first-class® or “second-class” status of temporal frequency
among perceptual attributes, McKee et al.’s data argue convincingly that, as stated
in the Preface, under the conditions of interest here, speed is a perceptually “real”
attribute, not derived by higher-level cognitive processes but “directly” available to
the earliest stages of cortical processing. It is worth keeping in mind however that
whatever conclusions are drawn regarding speed perception with these stimuli may or
may not apply to other stimuli. For example, Seiffert and Cavanagh (1997) showed
recently that the detection of motion of second-order displays (displays which have
no net motion energy but still elicit a motion percept) is most likely based on a
comparison of position information and temporal information rather than a direct

motion signal.

2.4.2 Speed and Contrast

The second major point of the McKee et al. study has to do with the relationship
between stimulus contrast and perveived speed. In an experiment analogous to
the one described above, McKee et al. measured speed discrimination thresholds

for a wide range of contrasts (from 6.4% to 82%). Their results show that speed
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performance was independent of contrast. Importantly, discrimination ability was
unaffected by within-block randomization of contrast. This is in apparent conflict
with the results of Thompson (1982) described earlier. If the Thompson results had
carried over, then one would have expected perceived speed to change over the range
of contrasts used in the McKee et al. (1986) study. which should have made the speed
discrimination task harder in the “mixed contrasts™ condition. One possible reason
behind the apparent mismatch between these two reports is that while Thompson
showed the contrast effect with 2 cpd gratings with TFs between and 1 and 8 Hz.
the gratings used in the mixed-contrast condition in McKee et al. (1986) were 1 cpd
gratings moving at speeds of 10 or 15 dps, i.e. with TFs of 10 or 15 Hz. Thompson’s
data showed that the contrast dependency nulled between 8 and 16 Hz and reversed
sign at 16 Hz. Thus one explanation for the discrepancy is that the TF's used by
McKee et al. were high enough that the contrast dependency was not present. This
may also explain the similar lack of contrast dependency found by Pantle (1978).
but that author does not report enough details in the footnote which mentioné the
contrast results to be able to know for sure.

In my hands, as reported in Chapters 4 and 7, stimulus contrast affects both
speed discrimination thresholds and perceived velocity. While the motivation for
these experiments and the conclusions one can dfaw from their results are left to
their respective chapters, it is appropriate to make a methodological point at this
time. The studies discussed above consider the effect of changes in contrast on
perceived speed or speed discrimination. The converse relationship is also true.
That is, stimulus speed can affect perceived contrast. That this is true is trivial in
the extreme. A very rapidly moving stimulus is blurred, and gratings for example
become indistinguishable from blank fields if their temporal frequency exceeds the
critical flicker fusion frequency, by definition. This can have profound consequences

regarding the controls necessary for speed studies. At high temporal frequencies
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especially, perceived contrast may be a more reliable cue to solving the experimental
task than speed. Thus if the stimulus contrast is held constant while speed varies. the
perceived contrast may be used by observers to perform the task under conditions
where their response has no relation (or only a limited relation) to their motion
system’s performance. It is therefore important to control for this cue when doing
speed discrimination and matching tasks. One technique is to jitter stimulus contrast.
Another technique which can be used sometimes is to use a contrast compensation
technique (Bowne et al., Personal Communication; Mandler, 1984). which explicitely
compensates for the shift in perceived speed by adding a pedestal contrast.

As has been mentioned before, the speed of a sinewave grating (the most com-
monly used stimuli in the studies reported here) is the ratio of the grating’s temporal
frequency by its spatial frequency. Speed is also the distance traveled by the stimulus
divided by the duration of the stimulus. What these relationships imply is that there
are many correlates of speed, which can, depending on the experimental design and
conditions, be more accessible to the subject than speed. Thus while the feedback
to the subject is based on stimulus speed, in poorly designed studies subjects re-
sponding to one of these correlates will perform the task well, while not basing their
behavior on perceived speed at all. For example, most studies of speed perception
hold the spatial frequency of the stimuli constant within an experiment, and vary the
speed of the stimulus by modifving its tempo‘rél frequency. As has been discussed in
detail earlier, temporal frequency is a stimulus attribute which subjects are notably
poor at discriminating. Furthermore, when trying to discriminate or match tempo-
ral frequencies, subjects often discriminate or match speeds. This, however, assumes
that the cues of duration and spatial displacement are not available. Most studies
using gratings use constant duration stimuli, and changes in speed (and TF) result in
changes in the spatial extent traveled by any feature of the stimulus (e.g. a peak or a

trough in a grating). The ability of humans to distinguish between distances is quite
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accurate (e.g. McKee & Welch. 1989). and in conditions where speed estimation is
hard, subjects may well switch strategies and use such positional cues to lower their
error rates. A good control for this positional cue to speed is to randomize the du-
ration of the stimuli, so that the positional cue is unreliable on a trial-by-trial basis
as to the stimulus speed. The amount of randomization necessary for this technique
to be effective depends on the threshold estimation procedure used. Further details

will be provided in the experimental chapters when this duration jittering is used.

Alas, many studies of speed perception did not incorporate these controls. and
thus are vulnerable to the criticism that the speed performance they report is in fact

performance on a relative position task or a perceived contrast task.

2.5 Summary

Speed perception is a psychologically real percept, based on the output of early
motion sensors. These motion sensors have narrow spatial tunings which are well
characterized by six-channel models, and broad temporal tunings, requiring at least
two and maybe up to four temporal channels. At least o.ne temporal channel is low-
pass, and the others are band-pass. Importantly, the spatial and temporal responses
of the filters are independent of one another. As the next chapter will make clear,
this property of the early filters is crucial in explaining why speed perception is
complex enough that it cannot be understood in terms of the “simple” readout of
a bank of filters, the way spatial frequency is often viewed. Briefly, if the output of
cells is defined by both spatial and temporal frequency tuning, then a given stimulus
velocity will result in the activation of mechanisms tuned to that stimulus’ spatial

and temporal frequency, but not to other mechanisms which, while tuned for the
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same speed, have different spatial and temporal tunings®.

This analysis of speed perception in terms of its inputs leaves a great deal to be
desired. Indeed, so far very little has been said about how speed is computed. if a
fair bit has been said about what the inputs to the speed computation are. This
issue of the process by which speed is computed is the topic of the next chapter,
which reviews the existing models of speed perception. Once the models have been
presented, experimental questions raised by their designs will be raised. and some of

them will be addressed by the later chapters.

6While there is a preliminary report in the literature of true “velocity-tuned” cellsin area
MT (Newsome, Gizzi, & Movshon, 1983), this result has apparently not been replicated,
although efforts are underway to do so (Simoncelli, 1997, personal communication).
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Chapter 3

Computational Models of

Speed Perception

This chapter will review the existing models of speed perception, compare their
coverage of the data. and outline some of the testable predictions they make.

There are three broad classes of models in the literature: models of motion per-
ception which address the topic of speed computation explicitely; models of motion
perception which do not mention the topic of speed perception, and models of motion
perception which. while they touch on speed computation, do so from the perspec-
tive of computer vision and not of human vision. Models from the first group will,
naturally, be the main concern of this chapter. Models from the second group will
be mentioned only in as much as they influenced the development of current thought
on motion sensing, and will not be reviewed extensively. The last group of mod-
els will not be covered. since their requirements are driven by engineering concerns,
and comparing them to psychophysical data would be inappropriate. For example,
several such models assume first that features of the objects moving in the display
have been identified and “tagged.” As the preceding chapter makes clear, this type

of approach is quite orthogonal to that apparently employed by biological visual
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systems.

Models of human motion sensing come from two traditions. each based on a dif-
ferent fundamental idea behind how motion might be detected. The first (chronolog-
ically). based on the biological intuitions of Reichardt described in the Introduction.
aims to detect correlations of the stimulus across space and time. and views motion
as the fact that a stimulus at position z; at time ¢ moves to position r, at time
t + At. After a review of the models which are based on this “correlational™ model.
the models based on gradient methods will be reviewed. These models are derived
from the mathematical observation by computer vision researchers that under some
conditions, velocity can be obtained by comparing the local rate of change of intensity
with the local spatial gradient of the image (the spatial variation in image intensity’).
The quality of the fit between psychophysical results and each class of model will
then be discussed, along with some predictions each makes regarding psychophysical

experiments.

3.1 Correlational Models

According to the correlational point of view, the essence of motion perception is to
detect correlations in the spatiotemporal structure of the stimulus—that something
moved from point A to point B in a certain time interval. The first such model used
the bilocal detectors described in the Introduction (Reichardt, 1961). To briefly
review the Reichardt. model, a schematic of the detector! is reprinted here (see
Figure 3.1. As described earlier, the input is processed by two opponent subunits in

parallel. each of which multiply the output of one of the sensors with a delayed version

1As per the common usage, the term detector is used to refer to an individual motion-
sensing unit, and the term model is used to refer to the entire theoretical framework, which

may include muitiple detectors.
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Figure 3.1: The Reichardt Model. See Chapter 1 for further details.

of the other sensor output (it should be noted in passing that this multiplication
makes the Reichardt detector a non-linear system). The entire detector’s output
is obtained by computing the difference between the output of the subunits and
averaging this difference over infinite time (which in practice. given the discussion in
Chapter 2, amounts to any duration of 100 msec or more), vielding a signed signal
for the direction of motion.

Because of the punctate nature of the sampling used in the Reichardt detector,
this detector is subject to spatiotemporal aliasing. If a spatially periodic stimulus is
displaced at a faster rate of speed than the detector’s intrinsic maximum speed, then
the movement direction indicated by the detector can be incorrect. Furthermore, the
Reichardt detector is a direction discrimination detector, not a speed sensor—thus
while one can use its output to build a speed model, it should not be considered a
speed model in the same category as some of the models presented below. Still, its

simple architecture makes it the most easily understood motion model, and it has
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had broad influences on subsequent modelling efforts.

3.1.1 Adelson & Bergen’s Motion Energy Model

Perhaps the most influential motion model in the last 15 years is the motion energy
model by Adelson and Bergen (1983). It is a two-stage model. with the first stage
consisting of a version of the linear filters described in the Introduction. while the
second stage computes a non-linear combination of the outputs of these filters. so

as to produce filter characteristics which are oriented in space-time. thus providing

speed tuning.

First Stage: Characteristics of the Linear Filters

The linear, first stage of the Motion Energy model is, as described in the Introduction,
an oriented filter with a bandpass spatial tuning and bandpass temporal tuning.
Specifically, the spatial impulse functions® used by Adelson and Bergen (1985) are

the second and third derivative of Gaussians, while the temporal functions are:

f(t) = (kt)" exp(—kt)[1/n! — (kt)*/(n + 2)] (3.1)

where n is either 3 or 5. Plots of the spatial and temporal functions are shown in
Figure 3.2. | | “

Since there are two spatial functions and two temporal functions, there are four
possible separable spatiotemporal combinations of these functions. which are illus-
trated in Figure 3.3, top panel. Since these functions F’ are just the product of the

spatial function S by the temporal function T, F(z,t) = S(z)T(t), it should be

2Impulse response functions are functions which describe the response of a system to a
unit pulse input. If a system is linear, then knowing the system’s impulse response function
allows one to derive the system’s response to any stimulus, by convolution.
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Figure 3.2: The spatial filtering functions (top panel) and temporal filtering functions
(bottom panel) used in the Motion Energy model of Adelson & Bergen, (1985).

Figure 3.3: The combinations of spatial and temporal functions used by Adelson and
Bergen (1985). The four spatiotemporal impulse responses show across the top are
the products of two spatial and two temporal impulse responses. The ones across
the bottom are sums and differences of those above. The result is a pair of leftward-
and a pair of rightward-selective filters. Members of a pair are approximately in
quadrature (Reproduced from Adelson & Bergen. 1985).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



clear that these functions are separable in space and time. The spatial profile of the
function is independent of the temporal profile. One consequence of this sepafability
is that the filter is not oriented in space-time. An oriented spatiotemporal filter is
one which responds differentially to a motion stimulus oriented in space-time. A
leftward moving stimulus will have a different orientation in space-time than a right-
ward moving stimulus for example. Thus the separable. non-oriented mechanism
just described is unable to tell leftward motion from rightward motion. This makes

the first stage of the motion energy model a fairly poor motion sensor by itself.

Second stage: Nonlinear combination of quadrature pairs

The second stage of the Adelson-Bergen model is the combination of two subpro-
cesses. The first consists of adding together the outputs of a set of the linear filters
described above, thus building a spatiotemporally oriented, nonseparable filter. while
the second process consists of extracting from the output of this summed linear filter
a measure of motion energy.

Many combinations of separable filters can be used to obtain a non-separable filter
(i.e. oriented in space-time). The combination used by Adelson and Bergen (1983) is
that proposed by Watson and Ahumada (1985), which is to sum the filters according
to the diagram illustrated in Figure 3.3, bottom panel. This combination yields filter
pairs which are spatiotemporally oriented. and approximately in quadrature.

The second operation is the extraction of motion energy. Indeed, the output of the
filters just constructed, while it will yield a good direction signal, is phase-sensitive:
thus the intensity of a given filter’s output will depend on the exact spatiotemporal
alignment between the stimulus and the filter. A phase-independent measure of
motion energy (or power) can be obtained by squaring the output of a pair of filters
in quadrature. The output of this motion energy sensor is in fact a reliable, phase-

insensitive indicator of motion direction, less subject to aliasing than the orginal
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Figure 3.4: The spatiotemporal energy spectrum of a direction-selective filter built
as the sum of two separable filters (Adelson & Bergen, 1985).

Reichardt model.

So far, however, no mention has been made of speed. To understand how Adelson
& Bergen viewed speed (which was not a primary concern of the model), one should
consider the spatiotemporal energy spectrum of the filter output, shown in Figure 3.4.
This figure shows that the filter's spectrum is concentrated in two localized regions
in the first and third quadrants. It is therefore sensitive to motion in one direction
(sayv to the right—spectral sensitivity in the second and fourth quadrants would
correspond to leftward motion sensitivity). Furthermore, its spectrum is localized
both in SF and in TF. Thus it is sensitive only to a small range of SFs, and to
a small range of TFs. This defines in turn a small range of speeds. Adelson &
Bergen propose that the entire window of visibility (Watson, Ahumada, & Farrell,
1986) is tiled with filters like the one schematized in Figure 3.4. In a brief sketch,
thev propose that speed is extracted by an unspecified combination of the ratios

of the outputs of filters tuned to different temporal frequency, but all tuned to the
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same spatial frequency. While it is not formally specified3. the discussion seems
to assume only three temporal channels per spatial frequency—a bandpass channel
for each direction, and a lowpass (static) channel. Acknowledging the weakness of
ratios in conditions where the denominator can tend towards zero. as in the case of
low-contrast gratings or of high speed gratings. thev propose that speed estimates
obtained from this ratio method be tagged with confidence values which would be low
for low contrast gratings or fast gratings, and that such information would be weighed
appropriately when combining (in an unspecified manner) information across spatial

frequency channels.

Summary of the Adelson & Bergen model

In summary, the model proposed by Adelson and Bergen is based on a few major
points, which are echoed in many subsequent models. 1) Spatiotemporally extended
filters are used instead of bilocal detectors to provide spatial- and temporal-frequency
tuned filters which limit the detector’s vulnerability to aliasing; 2) The ouputs of
these filters are combined using the motion energy design first proposed by Watson
and Ahumada (1983) in a different model described below. By summing the squared
output of filters in quadrature, a spatiotemporally oriented filter is constructed. which

vields a phase-independent measure of the stimulus motion energy.

3.1.2 Watson & Ahumada’s Scalar Motion Sensor

The Scalar Motion Sensor of Watson and Ahumada (1985) is surprisingly similar

in structure to the Adelson and Bergen (1985) model but quite different in both

3These conceras would tend to imply that Adelson & Bergen viewed the ratio of interest
to be the output of the e.g. leftward filter divided by the static filter, but this is not fully

specified in the paper.
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the components it uses and in the general perspective it presents regarding speed
computation.

Like the Adelson and Bergen (1985) model, the Scalar Motion Sensor (SMS)
consists of two stages. The first is a linear spatiotemporal filter, and the second
is a more complex nonlinear filter derived from the linear filter but which provides
spatiotemporal orientation (hence motion selectivity).

The specific functions used by Watson and Ahumada (1983) are as follows. The
spatial filter used is the Gabor function. A Gabor is a sinewave modulated by a
Gaussian. This function is used in many models of vision because it is both computa-
tionally convenient (being easy to evaluate, derive and integrate), fits psvchophysical
and physiological data relatively well, allow for the good simultaneous localization
in both space and frequency (Daugman. 1983), and in some cases allows the devel-
opment of useful formal proofs (e.g. in Grzywacz & Yuille. 1990). The temporal

function used is the Alpha function impulse response:

f(t) = E[fi(t) — nfa(t)] (3.2)
where
= ) 1t
ilt) = ey e/ e (3.3)

and u(t) is the step function, and with parameters (£ = 09.71 = 0.004,7» =
0.0053,n1 = 9.n2 = 10) chosen to fit the same psychophysical data (Robson, 1966)
used by Adelson and Bergen (1985) to motivate their temporal functions. These
filters are plotted in Figure 3.5.

At this stage. this model and the Adelson and Bergen (1985) model have virtually
identical filters. However, instead of adding pairs of such filters to make them non-

separable and adding the sum of squares of pairs of these new filters, Watson and
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Figure 3.5: The spatial and temporal functions used in the Watson & Ahumada,
(1985) model. The top panel displays the impulse response, amplitude response and
phase response of the temporal filter, while the bottom panel displays the spatial
impulse responses of a. main and b, quadrature paths (reproduced from Watson &

Ahumada, 1985).

[$]]
[RV]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



t( TEMPORAL FILTER
5 :-«) TEMPORAL DELAY
s :, y) SPATIAL FILTER

ht‘, HILBERT SPATIAL
Y

HILBERT TEMPORAL
h {t} FILTER

Figure 3.6: Mathematical structure of the scalar motion sensor (reproduced from
Watson & Ahumada, 1985).

Ahumada (1985) propose that the output of one filter be combined with the output
of the Hilbert transform in both space and time of the quadrature-matched filter.
The Hilbert transform is a linear filter which has some interesting properties. It
has unit gain for all frequencies (in other words it preserves the amplitude of all
spatial frequencies), and converts odd functions into evens and vice versa. Thus the
Hilbert transform along the spatial axis will take as input the Gabor and yield the
quadrature paired Gabor, while the Hilbert transform along the temporal axis will

transform the temporal filter as depicted in Figure 3.6.

At this point, there are two outputs—that of the original, Gabor/Alpha function
filter. and that which went through the “quadrature path,” e.g. the Hilbert trans-

forms in both space and time. These two filters can then be linearly combined so as
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to create a filter tuned for any direction.

What are the differences between the output of this combined sensor and that of
the motion energy sensor? While the specific mathematical formulations of the two
models are quite different, the kev difference between the two which is of interest
to us has to do with how speed is encoded in each model. Due to the use of the
sum of squared filters in quadrature. the Adelson and Bergen (1985) model is phase-
independent—thus the response of a motion energy sensor to a sinewave grating to
which it is well matched (in spatial frequency and temporal frequency and direction)
will be steady-state. While the signals in the Watson and Ahumada (1985) model
are in spatial quadrature, their outputs are summed linearly (and not squared first).
Thus the output of the SMS sensor is phase-dependent. and will in fact oscillate
sinusoidally at the temporal frequency defined by the stimulus and its motion. As
it is however a spatial-frequency tuned sensor, the speed information is encoded in
the combination of the spatial frequency tuning of the detector (a property of the
detector) and the temporal frequency of its response (a property of the dynamics of
the detector given a specific stimulus). It should be noted however that the SMS de-
tector is also an orientation-tuned, aperture-limited sensor. It thus suffers from the
aperture effect. in that a given detector will respond proportionally to the projection
of the stimulus velocity vector onto its preferred orientation. Thus for any stimulus
motion, a set of detectors with preferred direction around the direction of motion
will all respond. Watson and Ahumada (1985) propose that the perceived direction
of motion is that of the detector with the largest response within a “direction group,”
a set of detectors with similar SF tuning but with varying preferred directions (see
Figure 3.7). Watson and Ahumada (1985) propose that the perceived speed is chosen
to be that corresponding to the unit in a direction group with the largest response
for that group. Clearly, this model of speed perception assumes that the stimulus’

spectrum is simple (or rather does not specify how to deal with more complex stim-
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Figure 3.7: The structure of the vector motion sensor (reproduced from Watson &
Ahumada, 1985). The preferred direction of the sensor with the highest response
within a direction group corresponds to the perceived direction of the stimulus.

uli), and assumes that a single cell’s spatial temporal frequency tuning will provide
high enough resolution for speed discrimination (given the “winner-take-all” scheme
just mentioned). Clearly, given the temporal frequency tuning functions described
in the previous chapter and the good performance obtained on speed discrimination
tasks, this claim is dubious.

The Watson and Ahumada (1985) model is thus also a two stage model. The
first stage consists of linear filters of one of two types. The first type is a spatially
oriented Gabor filter, with an bandpass temporal function (an Alpha function). The
second consists of the Hilbert transform in both space and time of the first. The
outputs of these two filters are combined linearly in the second stage to provide a
response which is tuned in both SF and orientation. The TF of the stimulus can be
extracted by examining the TF of the response of these second-stage filters, which are
phase-sensitive. Analysis of the population of responses across “direction groups” of

detectors tuned to the same SF but different orientations allows the determination
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of stimulus direction and speed. While this model has the most unusual way of
dealing with both temporal frequency coding and speed readout. its requirement for
narrowly tuned temporal frequency mechanisms makes it quite incompatible with a
fair bit of both psvchophyvsical and physiological data. For example, its proposed
speed computation does not include a role for the low-pass temporal channel. which

will be shown in Chapter 7 to be an active participant in that process.

3.1.3 The Elaborated Reichardt Detector

The third model we will review, that of Van Santen and Sperling (1984, 1985) is
more directly based on the Reichardt model, but includes two significant changes
to that model: the introduction of spatially extended receptive fields instead of the
point receptors, and different temporal filtering operations than the infinite temporal

averaging proposed by Reichardt.

The van Santen and Sperling model is depicted in Figure 3.8. The spatial filters
used are differences of Gaussians, similar in shape to Gabors. The temporal pro-
cessing described in Van Santen and Sperling (1984) is the same temporal averaging
ovér infinite time which was used by Reichardt. while in Van Santen and Sperling
(1985), various temporal filters are considered. One of the key points of this model is
that variations on the van Santen & Sperling detector can be shown to be computa-
tionally equivalent (on average) to both the Adelson and Bergen (1985) and Watson
and Ahumada (1985) detectors. However, the model as a whole is not of particular
interest in the context of speed perception, as Van Santen and Sperling (1985) point
out that their detector is unable to discriminate between stimuli with speeds which

vary by an order of magnitude. It will thus not be considered further.
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Figure 3.8: The elaborated Reichard detector of Van Santen and Sperling (1985).
The input is a luminance pattern with contrast c(z,t). It is sampled by linear filters
(receptive fields, SF’s) with spatial responses Ties: and rrigne; yimr (H = left, right)
represents the signal at the various stages 7 for the left and right subunits. TF
indicates a linear, time-invariant filter with Fourier transform D(w), x indicates a
multiplication unit, TA indicates a temporal integration operation and — indicates
a unit that subtracts its left from its right input.

3.1.4 Heeger’s model

Building on the motion energy computation of Adelson and Bergen (1985), Heeger
(1987) proposed a model of motion perception which is more relevant to this disser-
tation than the previous ones, which mostly lay the theoretical groundwork. Indeed,
Heeger’s model is one of the first to explicitely describe a plausible algorithm for the
computation of speed, instead of simply direction.

The model also has two stages. The first stage consists of motion energy units,

built as 3-D Gabor filters with response defined by the equation:
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which is clearly a formula with six parameters. oz. 0y. 0t wr,. Wy, wo- Lhe first three
define the spatial constant of the Gaussian component of the gabor in both spa-
tial direction and in time. while the last three define the center frequency in both
spatial frequencies (or equivalently spatial frequency and orientation) and temporal
frequency.

These filters are different from the filters seen up to now in that there is no
special treatment of the time axis as compared to the spatial axes. This is done for
computational reasons regarding the computation in the second stage of the model.
The use of a Gabor in time has two consequences regarding the ability of the model to
fit experimental data. The first is that since a Gabor is symmetric around the origin,
when used in the temporal dimension, it is a non-causal filter—thus the response of
the filter at time t is dependent on the stimulus at times in the past (which is
expected) and in the future, which is both unexpected and not physically realizable.
A way to allow the use of non-causal filters like this is to assume that there is a fixed
delay in processing At which is prior to the action of the filter, with At large enough
that the value of the Gabor at times earlier than ¢ — At is insignificant. The second
consequence of the use of a Gabor filter in time is that the frequency response of
such a filter does not fit the psychophysical data as well as other filters such as the
Alpha functions used by Watson and Ahumada (1985).

The filter just described is just the detector part of the Heeger (1987) model.

These detectors are organized in a very specific way, as we will see, and their output
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is processed by explicit algorithms which allow a readout of speed.

The filters are organized in spatial frequency bands., so that all filters in a
family have the same spatial frequency tuning along their preferred direction (i.e.
V/@Wzo? + wyo? is constant). Within such a spatial frequency band. and for each ori-
entation, Heeger assumes twelve filters. Four of these filters are most sensitive to
stationary stimuli, four to (e.g.) leftward moving stimuli, and four to rightward mov-
ing stimuli. This architecture is repeated at a variety of scales using the Gaussian
pyvramid architecture (Burt, 1983), which corresponds to filters with equal band-
widths spaced an octave apart in spatial frequency, but tuned to the same temporal
frequency-.

To summarize this architecture, for each direction of motion (sayv leftward). there
is a family of pairs of filters, two per octave of SF, one tuned for stationary stimuli
and one for moving stimuli. Couched in psvchophysical terms, this means that there
are spatial frequency channels one octave apart, and that there are two temporal
channels (one lowpass and one bandpass).

Up to now, the tuning properties of the elementary detectors have been specified,
as well as their architectural arrangement. Of greater interest is how Heeger proposes
to compute speed from the responses of these detectors. Clearly, a moving stimulus
will vield responses in a variety of detectors with tuning properties which overlap
the stimulus properties. While the mathematical derivation of this response is not
of particular interest here, it should be noted that it relies essentially on a blurring
operation. Using the Fourier properties of the Gabor filters, Heeger derives the
output of each filter to a stimulus with a white (flat) power spectrum, translating in
a given direction at a given speed. This result provides a system of equations (one
for each filter) giving the response of the filters for any flat-spectrum stimulus as a
function of its direction and speed. Given this “forward” result, Heeger’s formulae

allow the model to estimate (using a “backward” estimation process) the stimulus
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speed from the filter responses.

This result is powerful, as it allows the exact computation of speed. However. it
assumes that the stimuli have a white power spectrum not only along the direction
of motion but across all directions—thus making it inexact for the wide majority of
visual stimuli. Ackowledging this, Heeger provides a least-squares algorithm for an
estimation procedure which minimizes the error between the predicted and measured
motion energies, by normalizing within a direction band (but still normalizing across

spatial frequencies and assuming a white spectrum within a direction band).

3.1.5 Grzywacz & Yuille, 1990

The second model we will consider which explicitely specifies a mechanism for the
extraction of speed from a set of filter responses is the Grzywacz and Yuille (1990)
model. The filter characteristics of this model are almost identical to those used in
Heeger (1987), but the speed computation stage is quite different. Again, each stage
will be considered in turn.

The filter responses used by Grzywacz and Yuille (1990) is also a 3-D (space/time)
Gabor, except that unlike those used in Heeger, the Gabor is circularly symmetric
in the two spatial dimensions (o = oy). Furtherm-ore,- the model makes the further
assumption that the spatial frequency bandwidth is narrow compared to the temporal
frequency bandwidth (o < o¢). This assumption seems warranted given the 1-2
octave bandwiths estimated in the spatial frequency domain and the fact that while
the specific number of temporal frequency channels is under debate, all proposed
channels have very wide total bandwidth (see Chapter 2).

The heart of the Grzywacz and Yuille (1990) model is the proof (not given here)
that given an infinite set of the filters just specified (more specifically including all

spatial frequencies and temporal frequencies), for any translating stimulus, the filters
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which respond most strongly to the stimulus lie on-a plane in the parameter space
defined by the filter’s spatial and temporal frequencies—a filter F* whose parameters
lie away from that plane will respond less than a filter G whose location in parameter
space is the normal projection of F' onto the plane corresponding to the stimulus
velocity. A graphical representation of this theorem is given in Figure 3.9.

In other words, the Grzyvwacz and Yuille (1990) model uses an inverse approach
compared to Heeger (1987). Instead of estimating the velocity which vielded a pat-
tern of activity on a limited set of filters, this model assumes (in the mathematical
part of the model) an infinite set of filters and proves that the stimulus energy lies
in a plane.

Given this mathematical proof, the model goes on to an implementation strat-
egy, which assumes only a limited set of filters (as in the Heeger (1987) model). The
task of the speed estimation in this implementation is then to find out what the
plane of maximal (theoretical) energy is, given the pattern of responses of a set of
filters. Grzywacz and Yuille (1990) propose two strategies for this estimation process
in detail. The first, the ridge strategy, assumes a large set of velocity tuned units,
which receive weighted excitatory input from the units corresponding to the spatial
frequency and temporal frequency tuned filters. This is illustrated in Figure 3.10.
Clearly. the weighting function which defines the amplitude of the input to each
velocity-tuned unit is the crucial aspect of this stfategy, as the selection of the per-
ceived speed is performed by a winner-take-all mechanism among the velocity-tuned
cells. This weighting function includes a mechanism for biasing low velocities, thus
addressing the aperture problem. If the filters are based on Gabor functions, then
an exact weighting function can be derived analytically.

The second strategy proposed by Grzywacz and Yuille (1990) is called the esti-
mation strategy. It has the advantage over the ridge strategy that it does not require

the existence of velocity tuned cells (for which there is no reported physiological
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Figure 3.9: Most of the distribution of motion energies lie near the plane Qn-v+, =
0 in the space of the cells’ optimal frequencies (n = (§2;,€2,) and Q;). (a) This figure
shows this distribution for a translating dot and indicates the plane where the motion
energies (sums of responses of quadrature pairs of directionally-selective frequency
tuned cells) are maximal. The motion energies rapidly decrease as the distance of
the filters’ optimal frequencies from the plane increases: diameter = cell response.
(b) This figure shows a two-dimensional cross section of a distribution like the one
in (a). (Reproduced from Grzywacz & Yuille, 1990).
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Figure 3.10: The ridge strategy. In the top part of the figure, the centre of the open
circles represent some sampling locations in the space of the cells’ optimal frequencies.
The diameters of the circles are not bandwidth here. The cross sections of two
velocity planes (corresponding to velocities v, and v,) are shown and seven motion-
energy cells (directionally selective frequency tuned cells) are labelled. In the bottom
part of the figure is shown how each of tehse seven cells make excitatory connections
to cells tuned to the velocities v, and v,. The thickness of lines in each connection
represents the connection’s strength. Motion-energy cells whose parameters are close
to a velocity plane make strong connections to the corrresponding velocity cells.
Motion-energy cells with parameters distant from that plane make correspondingly
weaker connections (Reproduced from Grzywacz & Yuille, 1990).
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evidence, see Chapter 2). In this strategy, an estimate of the temporal frequency
of the stimulus is made within each spatial frequency band. It is important for this
strategy that there be detectors with identical spatial frequency tuning. Grzywacz
and Yuille (1990) show that the distribution of responses of detectors with the same
SF tuning will be a function of the image’s spatial characteristics and of the image
velocity. However, the response of the detectors is linearly decomposable into these
two components. Thus regardless of the spatial characteristics of the image, the

detector response can unambiguously yield the correct speed estimate.

3.1.6 Heeger & Simoncelli

A more recent model developed by Heeger & Simoncelli (Heeger, 1993; Heeger,
Simoncelli, & Movshon, 1996; Simoncelli, Heeger, & Adelson, 1992; Simoncelli &
Heeger, 1994, 1997) builds on the Heeger (1987) model, but with a different em-
phasis, that of fitting physiological data, especially that on the effects of stimulus
contrast on cell responses. The model proposes three different unit architectures,
modeling V1 simple cells, V1 complex cells, and MT cells respectively.

The model for V1 units in the Heeger & Simoncelli model is similar to the first-
stage detector used in Heeger (1987), except that instead of being a 3-D Gabor, it
is a three dimensional version of a third derivative of a Gaussian. There are 28 of
these filters at each spatial location, corresponding to 8 different orientations, and
which cover a sphere in the spatiotemporal frequency space.

The output of these linear filters is then half-wave rectified and squared, so that
negative responses of the filter are suppressed, while positive responses are squared.
The output of these rectified filters is then normalized by the summed activity of a
pool of neurons with similar tuning properties. This response normalization is intro-

duced in order to account for a set of data both from physiological and psychophysical
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experiments (Robson, 1988: Bonds., 1989: Albrecht & Geisler. 1991: Heeger. 1991.
1992a, 1992b, 1993; DeAngelis, Ohzawa, & Freeman. 1992: Carandini & Heeger.
1994; Carandini, Heeger. & Movshon, 1996; Tolhurst & Heeger. in pressa, in pressb:
Nestares & Heeger, in press). This normalization factor is uniform over the full range
of orientation, direction and spatio-temporal frequency, thus while it effectively ac-
counts for some contrast data. it does not affect the tuning properties of the cells
relative to one another (which are of central interest to us in the context of speed
models). Thus for our purposes the model’s \'1 simple cells are similar in many
respects to the first stage of several of the previous models.

The only difference in the Simoncelli and Heeger (1997) model between V1 sim-
ple cells and V1 complex cells is the receptive field structure—\1 simple cells are
sensitive to the exact location of stimulus contrast within the subunit which make
up its receptive field, while V1 complex cells integrate over their receptive field in
a location-independent manner. The Simoncelli and Heeger (1997) model of a V1
complex cell is the result of adding together the output of several V1 cells which are
distributed over a local spatial region, but with the same spatiotemporal frequency
tuning. orientation and phase profile.

Both tvpes of V1 cells are tuned in spatiotemporal frequency and orientation.
which corresponds to power spectra which are localized in two locations diametrically
opposed to one another in spatiotemporal frequency space (see Figure 3.11). This
cell. therefore, will only fire given stimuli which not only have a specific speed and
orientation, but also a specific spatial frequency content. A stimulus of the “right”
speed and direction but with a single spatial frequency which does not match the
cell's tuning function well will yield no response. Thus these cells are not truly
“speed-tuned.”

The MT cells in this model are constructed so as to provide just this kind of speed

tuning. Their architecture is (not coincidentally) very similar to that of the V1 cells:
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Figure 3.11: Selectivity of a V1 neuron corresponding to a pair of localized spatio-
temporal frequency bands, symmetrically arranged about the origin. (Reproduced
from Simoncelli & Heeger, 1997).

the MT cells pool the responses of sets of V1 cells tuned to a given speed but whose
power spectra tile the spatiotemporal frequency plane corresponding to that speed.
To be more precise, the MT cell receives input from all V1 cells, weighting this
input by a measure of how related a given V1 tuning is with the speed tuning of the
MT cell. This weighting includes inhibitory connections, so that V1 cells which are
incompatible with the speed tuning of a given MT cell will, when active. decrease the
response of the MT cell. This generalized excitatory/inhibitory framework is similar
to the shape of the linear receptive field used in the V1 model. It should be clear
that the frequency selectivity of the MT cells will be that illustrated in Figure 3.11,
as that tuning defines the wiring diagram for these cells.

The output of these MT cells undergoes half-squared rectification and divisive
normalization, just as the V1 cells did. This provides a second stage of contrast
normalization, and avoids negative responses from MT cells incompatible with the
image motion.

As Simoncelli and Heeger (1997) describe, even with this carefully designed speed
tuning, the output of a single MT cell cannot by itself vield the speed of the stimulus,

since the response of a cell is dependent not only on its speed tuning, but on the
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contrast of the stimulus (more precisely the twice-normalized contrast response of
the unit), and on the spatial spectrum of the stimulus (a broad spectrum stimulus
with a given contrast will result in activity of more V1 cells which are connected
to the MT cell in question than a single sinewave stimulus). Thus stimulus velocity

must be decoded from the population of speed-tuned MT cells.

Simoncelli and Heeger (1997) present displays of the model output for a set of test
cases, arguing that the distribution of MT responses “implicitely” codes the perceived
velocity. It is unfortunate that the model does not make explicit how one is to go
from a distribution of activity on the MT responses to a perceptual judgment. To be
fair, the model’s main aim was to model physiological data, which it does quite well.
It remains to be seen whether a reasonable “decision rule” will yield good match with
the psychophysics. Of special concern in this regard is the disambiguation of one-
dimensional patterns (the classic “aperture problem”), which would seem to require
a somewhat a posteriori bias for low velocities, and the requirement of integration
over spatial extent in building complex cells, a point highlighted by Grzywacz and
Yuille (1990) which is likely to pose challenges regarding the perception of mutliple

non-transparently moving objects.

3.2 Gradient Models—Early Models

In a parallel track to the correlation models just reviewed exists an entirely different
set of models, based on a mathematical insight regarding the temporal statistics
of image intensities during rigid motion. This insight, first reported by Limb and
Murphy (1975) in a study of motion in television signals, is that the change in time of
the local intensity of a visual stimulus is proportional to the velocity of the stimulus

and of the spatial gradient at that point. This is true instantaneously, and only
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for a restricted class of stimuli,® but it captures mathematically the relationship
pointed out earlier on grating motion between spatial frequency. temporal frequency
and speed of gratings—a low spatial frequency grating has a lower spatial gradient.
and at a given speed, the temporal frequency will be proportional to the spatial
frequency. To state the result more precisely, the component of image motion along

the direction defined by the spatial intensity gradient® 7, is given by the equation:
A P gr gl A q

where E, is the temporal gradient of the image intensity, E, is the magnitude of the
spatial gradient of the image intensity in the direction of the gradient (the direction
along which the change is fastest). The negative sign is present because the velocity
being computed is that of the surface moving with respect to the observer (hence
the negative of the sampling point motion). The component of the velocity vector
along the isointensity contour lines (perpendicular to the gradient), %j, can not be
determined with this method. Other methods such as feature-tracking methods can
compute 7 directly, but assume that feature can be identified easily and matched
between frames, a problem which is often computationally intractable.

Limb and Murphy (1975) originally resolved this underspecification by assuming
that object segmentation had already been performed. and by assuming a random
gradient distribution. Under those conditions, the average velocity can be estimated.

Fennema and Thompson (1979), on the other hand, did not assume either presegmen-

Specifically. it is exactly true for lambertian surfaces with no shadows, as specularities
(highlights) and shadows tend not to travel with the stimulus.

5The spatial intensity gradient is a vector quantity indicating both the direction of
greatest change in image intensity (in a grating, the direction perpendicular to the grating),

and the rate of change of the image intensity (in a sinewave grating, this value depends on
the location, with maximal value halfway between the peaks and the troughs).
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tation or random gradient distribution, but instead computed the estimated velocity
vector at many points in the image, and used clustering techniques to estimate ob-
ject groupings. This method assumes frontoparallel translation (without which the
velocity estimates across objects would be too different from each other to cluster
effectively). Horn and Schunck (1981) developed a related model which traded the
assumption of frontoparallel translations for one of smoothness. Indeed, Horn and
Schunck (1981) resolved the underspecification from the gradient identity discussed
" above by requiring the minimization (using a least-squares method) of the integral
over the image of the magnitude of the velocity gradient. This allows the Horn and

Schunck (1981) model to deal correctly with rotating objects.

The next model to make use of the gradient identity was Marr and Ullman (1981),
a model which estimated the image velocity at edges (defined as the zero-crossings of
the convolution of the Laplacian of a Gaussian over the image: V2G(z,y) * I(z,y))-
The model does not attempt to deal with the underspecification of the velocity vector,
and simply proposes that the cells compute the velocity to within a 180° range, and
that several cells are used (in an unspecified manner) to restrict this orientation
ambiguity. The model does not attempt to deal explicitely with the issue of speed,

much like the early direction models of the correlational type.

In addition to the need for a regularization assumption (such as the smoothness
constraint used by Horn and Schunck (1981)), the gradient models suffer from an

instability due to the use of a ratio. Indeed, if the speed of the stimulus is given by:

81/t

=316z (3:5)

v =

then it should be clear that when 8I/9z gets close to zero, the computed speed gets

very large, regardless of the temporal derivative. This is the case for all areas in the

image which have little contrast.
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3.2.1 Koch, Wang & Mathur

A proposal for dealing with this ambiguity was put forth by Koch, Wang. and Mathur
(1989) in a model which is a derivative of the Marr and Ullman (1981) model. Asin
that model, the first stage of processing is performed by two types of units, S and T
units, which are presented as homologs of the lowpass and and bandpass temporal

channels discussed in Chapter 2. The mathematical definition of these units is given

by:
S@E.J) = VPG =I(.j) (3.6)
207 « I(7. 7
76,5 = L 7)

where V2 is the Laplacian operator (i.e. 82/8r2+8%/8y*) and G is a two-dimensional
Gaussian, an operator first proposed by Marr and Hildreth (1980) as being useful in
finding edges in images.

The novel aspect of the Koch et al. (1989) model is that instead of just using
the ratio of T and S. which suffers from instability, they propose a neurally inspired
architecture which implements the more complex formula:

=T(i.j)VS(i. j)

UG5k = 15,56 )P+ e (38

where € is a constant and Vi is the spatial derivative along a direction indexed by .
Since we are only concerned with speed, the directional derivative is not important
to us. What is important, however, is the behavior of U as a function of T and S.
Unlike in the standard gradient model, for regions with low image contrasts, as ViS5
goes to 0, the parameter € prevents the output U from diverging. In such conditions
(defined mathematically by Vi§ <€), U = —TV.S, in other words the product

of a temporal derivative operator and a second-order spatial filter. Thus the Koch
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et al. (1989) model is the standard gradient model at high contrasts. and a second-
order correlation model at low contrast. Importantly, it can only accommodate two

temporal channels, unlike several of the previous models.

3.2.2 The Multi-Channel Gradient Model

The final gradient model which will be considered here is the Multi-Channel Gradient
Model (McGM) (Johnston, McOwan, & Buxton, 1992; Johnston & Clifford, 1995.
1995). This model is very much like the standard gradient model, except for its
solution to the underdetermination of the denominator of the gradient. According
to this model, “when the first partial derivatives of the brightness function in the zt-
plane are close to zero, the second partial derivatives are unlikely to have low values.”
This assertion is based on results in Catastrophe theory (Poston & Stewart, 1978),
and its validity in the case of visual stimuli may need some empirical verification.
For example, in regions of low stimulus contrast, where the first derivative of the
brightness function is zero, one would assume that the second partial derivative
would either be underdetermined, or vary wildly due to the fact that the deviations
from zero are likelyv to be due to noise in the decectors; rather than image structure.
If one assumes for now that this claim is borne out anyway, then Johnston et al.
argue that the motion signal can be extracted from any nth-order derivative, not
just the first derivative as described in the original Horn and Schunck model. This
extension to higher-order derivatives allows them to model the detection of second
order motion patterns (see e.g. in Derrington & Badcock, 1985; Turano & Pantle,
1989; Zanker, 1990, 1993). Thus in some ways the McGM model can be viewed as
the regular gradient model, except that the spatial and temporal operators can be

higher order than in the standard model.
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3.3 Smith & Edgar

The final model we will consider is somewhat of an outsider to the models previously
presented, as it is billed as a temporal frequency model rather than a speed model.
It is however highly intuitive, and one can trivially consider speed perception to
be based on such a temporal frequency estimate and that from a spatial frequency
model. The Smith and Edgar (1990) model simply assumes two temporal channels.
one lowpass and one bandpass. with overlapping sensitivity functions over their en-
tire range. These sensitivity functions are such that at no two temporal frequencies
is their ratio identical. Thus, this ratio of two channel outputs can serve as a unique
measure of temporal frequency, as it will be monotonically related to temporal fre-
quency. The model is tested with adaptation studies, which yield a good fit only
if two conditions are met: first, adaptation must be subtractive and not divisive,
so that after adaptation the sensitivity of the channel is reduced by a fixed amount
throughout its sensitivity range, as opposed to by a fixed proportion. Second, for the
model to fit their data, Smith and Edgar had to posit that the bandpass mechanism
be much more adaptable than the lowpass mechanism, a distinction for which there

is no physiological data (or model-independent psvchophysical data).

3.4 Summary

While there are important differences between the models described in this chap-
ter, the similarities among them are perhaps more important. All of these models
propose two stages of computation. The first stage consists of the computations
which are well established as being performed by V1 cells, such as spatial-frequency
and temporal-frequency specific processing. The second stages of computation dif-

fer more significantly among models, as it is this stage which truly extracts the
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speed information. The experiments in the next chapters are aimed. not so much
as model-testing experiments, but as experiments which further specify the models.
What combination rules should these models use for spectrally complex stimuli if
thev are to match human data? What are their spatial and temporal properties?

Chapter 9 will then propose a new model which provides a framework within which

the psychophysical results can be incorporated.
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Chapter 4

Speed Discrimination is

Contrast Dependent

All of the models of speed perception which were considered in Chapter 3 assume
that the units which carry the speed signal are multiplexing information about several
aspects of the stimulus, scaled by a contrast-dependent factor, and produce a single-
valued output. Thus a change in the absolute response level of such a unit cannot
be attributed to any one of the many possible sources of response variation. These
sources of variation include changes in the matches between the properties of the
stimulus and the unit’s tuning functions (e.g. Sf‘, TF. orientation and position).
Importantly, a change in response can also be due to changes in the stimulus contrast,
with no other stimulus change. This type of model is quite common in psychophysics,
and many models of discrimination in various domains include this type of design
(Wilson, 1986; Watt & Morgan, 1984; Klein & Levi, 1985; Regan & Beverley, 1985).
The standard mechanism which discrimination models employ to “demultiplex” the
response and attribute changes in response to one or the other sources of variation is
to use a population code across banks of differently tuned units. Take as an example

orientation discrimination. If a stimulus changes orientation, the units which are
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tuned to the old orientation will respond less after the change. while units which are
tuned to the new orientation will respond more. Thus by examining the output of
sets of units, the change in the responses of the units can be attributed (with high
likelihood of being correct) to a change in orientation and not to two changes in the
contrasts of two different stimuli.

The fundamental consequence of such a design is that all types of discriminations
for which the units show tuning (i.e., SF. TF, orientation), as well as contrast dis-
crimination, will be based on the output of a common, unique set of filter responses.
Figure 4.1 shows a schematic of a subset of the filter sets, displaved along two dimen-
sions. The bandwidth of the spatial frequency tuning of the units increases down the
vertical dimension, and the preferred orientation of the units varies along the hor-
izontal dimension. The spatial frequency discrimination system is concerned with
demultiplexing changes between the units which lie in the vertical axis, while the
orientation discrimination system is designed to examine the outputs of units across
the horizontal axis. Contrast discrimination depends on the sum of the responses
of all the units (the dimensions corresponding to TF and spatial position are not
depicted for clarity).

Discrimination performance is never perfect, however. Indeed, all models of de-
tection and discrimination have at their core a definition of the source of noise which
is responsible for subject errors. These sources of errors can be due to neural limi-
tations. or to faulty assumptions about the world. The most common theory used
for analyzing subject errors is signal detection theory (Green & Swets, 1966), which
assumes that the response is based on a decision variable which varies monotonically
with filter response, itself a monotonic function of stimulus contrast. This decision
variable is then processed by a decision mechanism which is noise-free. The source
of noise in this model is therefore always present in the decision variable (indeed

the result of signal detection theoretic analysis is 2 measure d' of the signal to noise
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Figure 4.1: Figure of banks of filters tuned to orientation and spatial frequency. The
filter orientation varies along the horizontal axis, and the spatial frequency varies
along the vertical axis. See text for details.

ratio within that variable!). This assumption is often carried over into discrimina-
tion models, which assume that the decision variable is also obtained by a noise-free
process from the output of the filters described above. Thus performance in a given
discrimination task depends only on the signal to noise ra;tio at the level of the filters,
weighted according to the weights assigned to whatever filters are most appropriate
for that task (the decision rule for that task). This weighting of filter outputs, how-
ever, is assumed to be noiseless, along with all further processing. Thus performance
in such a model is necessarily limited by the signal to noise in the filters. This is

a powerful assumption, since it allows one to use filter characteristics obtained by,

IThe d' statistic is only valid for models which assume a Gaussian noise distribution or
for binary variables with large numbers of trials, both of which are commonly assumed in

psychophysics.
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Figure 4.2: A schematic diagram of the error-propagation class of models, which
include the models of Wilson (1986), Klein and Levi (1985), Regan and Beverley
(1985). A number of filters respond to the stimulus, of which one is shown. The
filters are bandpass or lowpass in SF, TF, and orientation, and their responses are
monotonically increasing functions of contrast. Gaussian noise is added to the output
of each filter. A noiseless combination process is used to compute estimates of SF,
TF, orientation and contrast from the filter responses. Since all discrimination tasks
are limited by the noise added to the filter outputs, they will all have the same
contrast dependence. (Reproduced from Bowne, 1990).

e.g.. contrast discrimination experiments, and apply them to. e.g., TF discrimination
tasks.

Is this assumption valid, and if not, what are the consequences for speed dis-
crimination models? The only report testing this assumption is the study by Bowne
(1990). Bowne presented an argument similar to the one above. and proceeded to test
it by measuring the effect of contrast modulation on the discrimination thresholds
for observers in four tasks: contrast discrimination. spatial frequency discrimination,

orientation discrimination, and temporal frequency discrimination. According to the
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model presented above (which Bowne refers to as the error-propagation model. since
the only source of noise is at the first stage of processing. and it is propagated with-
out addition throughout the process—see Figure 4.2), all discrimination thresholds
should increase linearly with d’, which in turn should be approximately proportional
to the relative change in contrast, SF, orientation or TF. Thus the error-propagation
model predicts a similar shape for the threshold expressed in Veber fractions®, re-
gardless of the stimulus attribute which is being discriminated. Bowne's data (see
Figure 4.3) show that contrast discrimination decreased approximately linearly with
increasing contrast, for contrasts between 2% and 50%. while SF. orientation and
TF discrimination performance are independent of the contrast level used.

Bowne’s conclusion from these results is simply that discrimination performance
(except for contrast discrimination) is not limited by noise at the level of the filters
(which he terms peripheral noise), but instead by central noise, which occurs at the
level of (or just prior to) the decision rule. This is best illustrated by referring to
his schematic of the discrimination process, redrawn in Figure 4.4. The key addition
to the model presented earlier is that of a separate, independent noise source at the
stage of each (task-specific) decision rule. Performance in one task can therefore not
necessarily be directly compared to performance in another task.

Do Bowne’s results mean that speed discrimination is never limited by noise
in the filters described above? If that is true, then all of the models described in
Chapter 3 need to be reconsidered in light of this “late-noise” model. As discussed in
Chapter 2, correctly measuring TF discrimination performance is hard, as observers

generally base their responses on perceived speed rather than perceived TEF (McKee

2The Weber fraction is the ratio between the change in the stimulus attribute required
for a given percentage of correct answers divided by the value of that attribute. For
example, a Weber fraction for contrast discrimination in Bowne'’s experiment is the change
in contrast required for 92% correct performance and the contrast at which the threshold

was estimated.
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Figure 4.3: Contrast discrimination and TF discrimination thresholds are shown as
a function of pedestal contrast, using 1 cpd gratings drifting with a base TF of 5 Hz.
Contrast discrimination improves at high contrasts, while TF discrimination does

not. (Reproduced from Bowne, 1990).

& Welch, 1985; McKee et al., 1986). This would seem to indicate that Bowne’s TF

results are really speed discrimination rather than TF discrimination results.

Let us assume for the sake of argument that Bowne’s data are accurate measures
of speed discrimination performance in general (several concerns with the generality
of his data will be discussed below). This would indicate that the speed discrimi-
nation results obtained in all of the reports described in Chapters 2 and 3 are due
to noise in central processes, and not to peripheral noise. Furthermore, it would
make it very difficult to apply the data obtained on the properties of the spatial
and temporal channels (Chapter 2) and the models of speed perception (Chapter 3),
let alone new data. It is thus important to determine whether speed perception is

always limited by central noise, or whether under some conditions at least peripheral

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



\/\/ Filters

Periphers! Noise

Calculate Cailculate Calculste Calculsate Combination
Contrast SF Orlentation TF of Chsannels

[+noise] +noise | [+noise] Centrat Noise
v

Homuncutlus

Figure 4.4: A realistic model of discrimination, including both peripheral and central
noise sources. The stimulus is first passed through a number of filters with outputs
which depend on the SF, TF, orientation and contrast of the stimulus. One filter’s
center-surround spatial sensitivity profile is shown. “Peripheral” noise is added to
each filter’s output. The outputs of these filters enter combination processes, which
extract estimates of stimulus parameters such as SF, TF, orientation and contrast.
Central noise is added to each of these estimates to form the decision variables for
discrimination tasks. Because the central noise may be different for each task, mea-
surement of contrast discrimination does not provide enough information to predict
other discrimination thresholds. The box at the bottom labeled “homunculus” repre-
sents all higher mental processes which use the decision variable to select a response.
Any noise added by the homunculus is assumed to be negligible compared to the
explicit noise sources shown. (Reproduced from Bowne, 1990).
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noise can be the limiting noise.

There are some methodological concerns with Bowne’s experiments which need
to be considered before his data taken to mean that peripheral noise is not the
limiting noise for speed discrimination. The subjects in Bowne’s task are Bowne
himself and subject SPM, who is an extremely highly trained observer used to speed
discrimination tasks. Furthermore, their thresholds for TF discrimination correspond
to Weber fractions of less than 10% at d' = 2, which is quite good performance (see
e.g. McKee et al., 1986; McKee & Welch, 1989; Turano & Pantle, 1985). It is thus
likely that as in all psychophysical tasks with highly trained observers, the subjects
used all available cues to perform the task as well as possible. Two characteristics of
his stimuli should be noted. First, Bowne’s displays had fixed durations of 500 msec,
with abrupt onset and offset. One consequence of this fact is that the distance
traveled by a grating in the displays was perfectly correlated with the grating’s TF,
thus providing a spatial cue which could at least in theory be more available to
the subject than the TF of the stimulus®. In addition to having fixed durations,
the stimuli used by Bowne had fixed contrasts within a condition. As described
in Chapter 2, perceived temporal frequency and perceived contrast can affect one
another. The apparent contrast of the gratings may thus have correlated with their
TF, thus providing another correlate of TF which might have had been less noisy
than the TF signal®. The experiments presented in this chapter are designed to

address these methodological concerns with Bowne’s data.

3The spatial phase of the gratings was randomized, however, so the absolute positions
of gratings were not useful cues.

4While this last statement seems to imply the central noise limits of Bowne, what is
meant by that is that while the signal within a unit is equally noisy regardless of the task,

discrimination depends not only on the signal to noise within a mechanism but on the
specificity of tuning of sets (at least pairs) of mechanisms.
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4.1 Experiment 4.1—Methods-

This experiment is a replication of Bowne's TF experiment except that the two
methodological concerns discussed above were taken care of: the duration of the
stimuli is jittered around the mean duration in a manner uncorrelated with the
speed of the stimulus, so that the distance traveled by a grating cannot be used
as a cue to speed. Also, as discussed in Chapter 2, perceived speed is influenced by
contrast and vice versa (Thompson, 1982; Stone & Thompson, 1992). so contrast was
also jittered around the mean value within a block (and between the two intervals of
each trial), so that the effect of contrast on perceived speed could not be a good cue
to speed. Both of these jitters were of = 20%, so any speed discrimination threshold
less than 40% cannot be due to either of these two known covariates of perceived
speed. Both duration and contrast jittering was used in all experiments described
in this dissertation, except where otherwise noted. The effect in contrast is thus one
exhibited as the mean contrast changes—while the contrast in each condition was
jittered across trials, it was jittered around a mean which was changed depending on

the condition.

4.1.1 Stimulus Generation

All stimuli used in this dissertation were sinewave gratings displayed on a y-corrected
Tektronix oscillocope model 608 equipped with a P3! phosphor. Mean screen lumi-
nance was measured with a SpectraScan photometer at about 20 cd/m® 5. The
gratings were generated by an Innisfree, Ltd. Picasso image generator under com-

puter control via a set of digital to analog and digital I/O interface cards. The

5The precise mean luminance of the display depends on the orientation of the scope
relative to the dim light in the room and the subject, as well as such minor effects as the
color of the clothing worn by the people present in the room.
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Picasso outputs one or two gratings on a given oscilloscope frame. The frame rate
was set at 100 Hz for all of the experiments reported here. The contrast. spatial
frequency, temporai frequency and orientation of each grating is set at each frame.
thus allowing precise control over all relevant stimulus characteristics.

The oscilloscope screen has a rectangular shape, with dimensions 10 cm x 13 cm.
but in this experiment, a circular aperture made of black matte cardboard and with
a diameter of 9 cm was placed in front, thus limiting the effective screen size. A

. small fixation dot was affixed to the center of the oscilloscope in some of the trials.
and had no effect on performance.

Observers viewed the display with their heads stabilized in a chin rest, so that
their eves were at the level of the center of the oscilloscope. The room was dimly lit
throughout the experiments. Two observers were used for this experiment: subject
DA, the author, a myope wearing corrective optics, and subject LW, an emmetrope.
In all experiments, observers were allowed to set their own pace by taking breaks

between blocks.

4.1.2 Task

The method used to obtain speed discrimination threéholds in this experiment is
the method of single stimuli. In each block, a set of 150 trials was presented to the
observer. A trial consisted of two intervals in which moving gratings were displayed.
The observer’s task was to indicate by means of a mouse button press which of the
two intervals contained the stimulus which moved faster. Incorrect responses were
automatically indicated to the observer by a computer beep. In both intervals of all
trials of this experiment, ‘the spatial frequency content of the stimuli was identical.
Speed was manipulated by varying the temporal frequency of the gratings. The

relative changes in speeds of the two intervals varied across trials, so that 30 trials
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had a speed difference of N%, 30 trials had a speed difference of 2X%. etc. up to
5N%. where N was chosen so as to vield good fits with the psychometric function
(described below). In all cases the mean speed of the two stimuli across intervals was
the same, so that for the trials with a speed difference of 20%. one interval contained
a stimulus which moved at 90% of the mean speed. and the other a stimulus which
moved at 110% of the mean speed. The order of the trials was randomized within a
block, and which of the two intervals in a given trial contained the fastest stimulus
was also randomized across trials, so that on a given trial, the observer had no way
of predicting which interval contained the fastest speed or what the speed difference
was.

Responses were tabulated and the percentage of correct discriminations was com-
puted for each of the speed differences. These percentages were then fit with a
Weibull function®, vielding the estimated change in speed needed for a 75% correct
discrimination performance, corresponding to a d' = 1.

In all conditions, stimuli lasted 120 msec on average, with the £20% duration jit-
tering mentioned above. The gratings were 1 cpd gratings moving at 5 Hz. Contrast
was chosen to be one of 2.5%, 5%, 10%, 20%. or 40% depending on the condition.

One or two blocks of 150 trials were taken for each data point.

4.2 Results

The mean thresholds for each subjects as a function of contrast are plotted in Fig-
ure 4.5. In this and all subsequent plots, except if noted otherwise, the error bars
indicate the standard error of the mean. The results are virtually identical between

the two subjects, with subject LW’s thresholds being consistently lower than DA’s.

6The Weibull fitting algorithm was provided by Sam Bowne.
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Speed discrimination performance is quite poor at very low contrast. reaches its best
performance (lowest threshold) around 10% contrast. and appears to worsen slightly

for very high contrasts.
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Figure 4.5: Speed discrimination threshold (in percent) plotted as a function of
stimulus contrast for 1 cpd. 5 Hz gratings presented for 120 msec. In this and all
subsequent plots, error bars indicate % one standard error of the mean.
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4.3 Discussion

Two minor aspects of the data will be considered first. First. the absolute level of
the thresholds corresponds to much worse performance than that reported in many
studies of speed discrimination (McKee et al.. 1986; McKee & Welch. 1989: Turano
& Pantle, 1985). This is no doubt because of the extreme conditions employved here.
The gratings are visible for on average 120 msec. which is quite brief. Furthermore,
the duration is jittered, thus affecting perceived speed (Giaschi & Anstis, 1989).
Finally, at low contrasts, the gratings are not very visible. One concern one might
have is that the gratings are in fact at threshold for the lowest contrasts used in this
experiment. To test this hypothesis. a simple QUEST procedure (Watson & Pelli,
1983) was used to measure the detection contrast for gratings as were used in this
experiment, under the same conditions. For observer DA, that contrast was 1.15%.
For subject LW, that contrast was 0.97%. Thus even the lowest contrast used was
at least an octave superthreshold, arguing that the contrast effect (found even for

5% gratings) is a true contrast effect and not a detection artifact.

The second point concerns the increases in threshold for 40% contrast. While this
has been seen before (Welch. personal communication), this effect is hard to explain,
and would require further study to make sure that it is reliably reproduceable. To
account for such a result requires a mechanism whose response as a function of
contrast saturates at high contrasts. With such a mechanism, differential responses
to, e.g., slow and fast stimuli would vield progressively more similar responses in
speed-tuned mechanisms as the contrast response is compressed in the saturating
mechanism.

As can be readily seen in Figure 4.5, with increasing contrast, thresholds de-
creased by approximately 35%-50%. showing that in our experimental conditions,

speed discrimination performance is in all likelihood limited by what Bowne terms
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peripheral noise.

How can this contrast data be reconciled with Bowne's data, which show quite
clearly that performance on a TF discrimination task being limited by central noise
instead of peripheral noise? Two of the differences between his experiment and ours
are most likely not the source of the differences in the results. The fact that we
used a different threshold estimation technique is unlikely to affect the thresholds
(in pilot experiments, various techniques were used yielding similar data—the pro-
cedure described above was chosen because it yielded stable data). Also, Bowne
used a 4.5° aperture at 114 cm from the observer, while the observers in this study
viewed the stimuli through a 9° aperture at 57 cm. This change is also unlikely
to be the source of the effect, since increasing stimulus area should if anything have
improved performance, while our data show worse performance than Bowne’s. While
the absolute Weber fractions are quite comparable, the two tasks yield thresholds
for verv different d’ values. Bowne’s use of the QUEST procedure means that his
thresholds correspond to a d' = 2, while the method of constant stimuli and Weibull
fitting used here vields threshold estimates corresponding to d' = 1. The thresholds
obtained in this experiment thus need to be multiplied by two to be compared with
Bowne’s. They are noticeably higher than Bowne’s. most likely because the jittering
of contrast and duration introduces noise in the decision process - furthermore, the

short duration used in this experiment reduces the amount of signal available for the

discrimination.

There are however three candidate explanations for the differences between the

results of the two studies.
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4.3.1 Corrections in the methodology

The first explanation is that the methodological issues which motivated this study
are responsible for the discrepancy in the presults. According to this explanation.
Bowne’s subjects might have been doing a spatial displacement task in lieu of the
TF task they felt they were doing. The gratings Bowne used were 1 cpd gratings
moving at 5°/sec. Thus in 500 msec, they traveled 2.5° of visual angle. about half
of the size of the aperture through which they were viewed. If this is the case. then
it is the spatial displacement task which was shown to be limited by central noise.
a result which would be interesting in its own right but outside the domain of this
dissertation. Experiments testing spatial displacement discrimination ability would
have to be run to test whether this is indeed the case. Similarly, the apparent contrast
of the gratings could have been a cue to speed. It is however unlikely that Bowne’s
subjects were using it to perform this task. Indeed, examination of his Figure 5
(reprinted above as Figure 4.3) show that Bowne’s subjects’ ability to discriminate
contrast does show a contrast dependence. The contrast Weber fractions are always
larger than the TF Weber fractions in Bowne’s data—thus for the TF discrimination
results to be due to contrast discrimination, the change in perceived contrast due
to the indirect effect of TF on contrast must be greater (in proportion) than the
effect on perceived contrast of a direct change in physical contrast. Numerically, this
would require that for low contrast gratings, an 11% change in TF (which correspond
to performance higher than 92% correct for both observers in Bowne’s study (see
Figure 4.3) must result in a change in perceived contrast greater than an 11% change
in stimulus contrast (which is not enough to yield the same level of performance in
the contrast task for-the same two observers). While this is possible, there are no
published data regarding such an effect at these TFs. In my hands, the effect of TF

on contrast is greatest at very high TFs (indeed, around the critical flicker fusion
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frequency, small changes in TF can result in massive changes in apparent contrast).

Bowne used quite moderate TFs of 5 Hz, thus it is unlikely that his TF discrimination

results are due to perceived contrast cues.

4.3.2 Learning Effects

An alternative explanation of the difference between Bowne's data and the data
presented here lies with the observers. While all the subjects in both Bowne's study
and this study are well trained, it is possible that Bowne’s subjects logged more
hours than DA and LW at the specific stimulus configurations used (the experiments
reported in Chapter 8 indicate that indeed some stimulus-specific learning can occur
even for well-trained observers). It is possible that Bowne's observers had undergone
perceptual learning at the peripheral level, thus pushing the level of the peripheral
noise down far enough that the central noise became the limiting noise. While
in theory the inverse process could have occured—that Bowne’s subjects for some
reason increased the level in central noise until it became the limiting noise—this
is highly unlikely not only because of their high level of training but because their
performance is higher than that obtained here.

Finally, the displays used in this experiment had a mean duration of 120 msec,
while Bowne used 500 msec displays. Just as performance saturates for high con-
trasts. presumably because of signal-to-noise ratio reduction due to high signal
strength, it is quite likely that performance can be enhanced by longer durations,
until it saturates. This is the topic of the next chapter on temporal integration.

All of these explanations can be summarized by saying that due to either method-
ological or learning differences, the performance of Bowne’s subjects was limited by
central noise, while ours appears to be limited by peripheral noise. While the two

results appear contradictory, the evidence for peripheral-noise limits in discrimina-
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tion processing is a significant result, while Bowne’s results consist of a failure to
find an effect. In other words, these results mean that the models based on contrast-
modulated signals can be used, provided that conditions of high peripheral noise
are used. Furthermore, our results indicate that for contrast effects to be found in
speed discrimination tasks, it is important to choose stimulus parameters at which
the discrimination process is indeed limited by peripheral noise and not central noise
(e.g. by using short jittered durations and low contrasts). Almost all subsequent
' experiments presented in this dissertation use such stimulus parameters. precisely so
that the manipulations can yield information on the local speed mechanisms, rather
than on later processing. It should be kept in mind that when an effect is not found.
it is quite difficult to know whether the lack of effect is due to this central noise

problem, or to a true absence of effect of the manipulation on the visual system.
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Chapter 5

Temporal Integration in

Speed Discrimination

In the previous chapter, evidence for integration of information in a speed discrim-
ination task was found when using short duration, low-contrast gratings (i.e. under
experimental manipulations which minimize the signal strength, thus minimizing the
signal-to-noise ratio within the putative motion detectors).

While the dependent variable studied in that experiment was stimulus contrast.
it was noted that the duration of the stimuli which was used was much shorter than
used in Bowne (1990). The experiments presented in this chapter test what the

influence of stimulus duration is on speed discrimination thresholds.

5.1 Methods

Subjects LW and DV participated in this experiment. Both are emmetropes.
The same general setup was used as in the experiments reported in Chapter 4.

The oscilloscope was covered with a 9° cardboard aperture within which the stimuli

were displayed.
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The gratings were all 1 cpd gratings with 10% contrasts (jittered by =20% as
discussed earlier). Durations were chosen for each block to be either 120 msec.
200 msec. 300 msec. 400 msec or 500 msec. Duration was jittered by £20% for
subject DV, but not for subject LW. The durations were randomized across blocks.
and the two subjects were presented with the duration conditions in reverse order.
Speed discrimination thresholds were estimated with the Probit method. In this

- method, subjects are presented with 150 trials, and are asked to judge whether each
stimulus is faster or slower than the mean speed of the stimuli. As this speed can only
be estimated by experience with the stimulus set, observers were given some practice
runs to allow them to set the criterion for this mean speed. Grating speeds where
chosen in a block-randomized fashion to have one of five speed centered around a
mean speed, and separated from the next by a constant step in speed. For example,
if the mean speed was 2°/sec and the step size was 0.2°/sec, then speeds were chosen
from 1.6. 1.8, 2.0, 2.2, and 2.4°/sec (20% of the trials each). The step size was
selected so as to vield a good psychometric fit. In the experiments reported in this
chapter, the mean speed was always 5°/sec, corresponding to a TF of 5 Hz. The
observer indicated whether a stimulus was slower or faster than the mean by using a
computer mouse button. Incorrect answers resulted in computer beeps. No answer
was considered incorrect for the stimuli which had i:he mean speed. The results
were tabulated and fit with a Probit distribution. which yielded several measures.
A y? measure was reported, and was used to throw out blocks which were not well
fit by a psychometric function. A point of subjective equality (PSE) indicated the
estimate of physical stimulus speed which corresponded to 50% performance given
the psychometric function, and was used to check against large shifts in the PSE,
of which there were none. Finally, the speed increment corresponding to 75% “fast”
responses was also estimated, vielding the threshold change in speed needed for

d' = 0.67 performance, accompanied by a measure of the standard error of that
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estimate. These thresholds and standard errors were tabulated and combined across
blocks of 150 trials. All data points correspond to at least 300 trials. Error bars

indicate & the standard error of the threshold.

5.2 Results

The estimates of speed discrimination threshold as a function of stimulus duration are
plotted in Figure 5.1. They show that as stimulus duration increase. performance
improves. The most significant improvement in performance is between 120 msec
and 200 msec for both subjects, but it is possible that thresholds continue to drop
until 500 msec, although further statistical analyses would be required to test this
rigorously. Subject DV’s thresholds are consistently higher than subject LW’s. One
possible reason for this difference is that LW has logged more hours doing speed
discrimination experiments than subject DV. Another probable cause for the differ-

ence is that the stimuli presented to DV had jittered durations, which made the task

harder.

5.3 Discussion

These results argue that just as when signal strength is modified by controlling
stimulus contrast, as in Chapter 4, signal to noise can be increased by using a longer
stimulus duration. This is most likely the reason why our contrast results showed
discrimination performance limited by peripheral noise while Bowne (1990) failed
to. The lack of large change in performance between 200 msec and 500 msec is
consistent with the report by (McKee et al., 1986) that Weber fractions did not
change significantly between 230 msec and 500 msec stimuli. It is quite possible that

integration could be found with lower contrasts, as this would decrease the signal-to-
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Figure 5.1: Speed discrimination threshold (in percent) is plotted as a function of
stimulus duration for 1 cpd, 5 Hz gratings at 10% contrast. The data is for subject
DV in the upper panel, and for subject LW in the lower panel.
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noise ratio, thus possibly allowing more “room” for a temporal integration process
to occur.

This duration of between 120 msec and 200 msec is quite consistent with what
one would expect from the temporal filters which have been proposed. such as the
Alpha functions of Watson (1986). Finally, it is interesting that our data appear
to indicate a slight trend towards better performance with longer displays. up to
the longest duration tested. This would be consistent with the notion of probability
summation in time (Watson & Ahumada. 1985). Further testing would be required

to make this determination more precisely.
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Chapter 6

Size Characterization of the

Speed Mechanism

The last chapter presented results which argue that the temporal integration window
of the mechanism responsible for speed discrimination is at least between 120 msec
and 200 msec. The experiments presented in this chapter investigate the same ques-
tion in the spatial domain. Specifically, what is the spatial area within which the

speed discrimination system integrates?

6.1 Methods

Subjects LW and CJ participated in this experiment. LW is an emmetrope, and
CJ wore his normal optical correction. The methods are as in Chapter 5, with one
exception. Since the stimulus paramefer under study is its spatial extent, the elec-
tronic aperture capability of the Picasso frame generator was used. While observers
viewed the full oscilloscope display without a cardboard aperture, the gratings were
only displayed within an electronically defined aperture. For subject LW, the aper-

ture was always 1 cm tall and either 1, 2, 4, 8 or 10 cm wide. For subject CJ, the
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same conditions were used, as well as a condition where the width was kept constant
at 1 cm, and the height was varied (the maximum height was 9 cm. the height of
the oscilloscope. The part of the scope not within the electronic aperture was at
mean luminance. In all conditions, the gratings were vertical gratings moving left or
right. Thus in the case of subject CJ, half of the gratings were elongated along their

direction of motion, while the other half were elongated in the orthogonal direction

(see Figure 6.1).

The gratings were all 1 cpd gratings with contrasts chosen randomly from the
2.5%-5% range. Their speed were chosen around a mean speed of 5° /sec(corresponding
to a TF of 5 Hz), using the Probit method described in Chapter 5, with a step size
of 15%. The display duration was jittered £20% around 120 msec. All data points
correspond to at least 300 trials, except for the data for subject CJ in the vertically
elongated condition, which correspond to 150 trials. The error bars indicate the

standard error of the threshold.
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Figure 6.1: Schematic representation of single frames of some of the stimuli used in
this experiment. The top panel depicts some of the gratings used by both subjects,
while only subject CJ saw the gratings depicted in the bottom panel.
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6.2 Results

The estimates of speed discrimination threshold as a function of stimulus size are
plotted in Figure 6.2. They show that as stimulus size increases. performance im-
proves. No asymptote is visible in LW’s data. for stimuli up to 10 cm wide and
1 cm tall. Subject CJ’s data is similar to LW’s. The thresholds for tall displays are

consitently higher than for long displays.

6.3 Discussion

The only report on the size and shape of the mechanisms responsible for speed per-
ception is an abstract by (Bowne, 1990), who compared speed discrimination thresh-
old for vertically elongated horizontally moving gratings vs. horizontally elongated
horizontally moving gratings. His target gratings had a SF of 1 cpd, variable TFs
around a reference TF of 5 Hz, and were displayed for 500 msec at very low contrast
(0.1-1%). The mask gratings had randomly chosen SFs between 0.7 and 0.9 cpd,
a contrast of 1%, and a fixed TF of 5 Hz, and were on for the entire 500 msec.
Two comparisons should be made between Bowne’s data and the data just reported.
Firstly, our results replicate his finding that elongation in the horizontal direction re-
sults in higher gains in performance than elongation in the perpendicular direction.
Secondly. one may wonder why we found an effect without a mask, while Bowne
states in his abstract(Bowne, 1990) that without a mask he found no effect. One
likely reason for this difference is that, as discussed in Chapter 4. 500 msec displays
may be too long to allow the detection of peripheral noise effects.

What can we conclude from these results? The conclusion which Bowne drew
from his results is worth repeating here. Bowne felt that the elongated nature of

the speed discrimination mechanism was designed to allow for efficient integration
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Figure 6.2: Speed discrimination threshold (in percent) is plotted as a function
of stimulus size for 1 cpd, 5 Hz gratings at 10% contrast presented for 500 msec.
The data is for subject LW in the upper panel, and for subject CJ in the lower
panel. The dashed line indicates the vertically elongated conditions, the solid line
the horizontally elongated conditions.
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of the motion signal over the trajectory of the grating. so that speed information
could in theory be made more reliable as the object was “tracked.” This idea can
be related to a set of recent psvchophysical results which argue for similar notions
(e.g. Burr, Ross, & Morrone, 1986; Watamaniuk & Sekuler. 1992; McKee & Welch.
1985: Turano & Pantle, 1989; Werkhoven, Snippe. & Toet. 1992: Watamaniuk. Mc-
Kee. & Grzywacz, 1994; Grzywacz, Watamaniuk, & McKee, 1995). Regardless of
whether speed information is integrated especially efficiently along trajectories, one
might wonder what the exact shape of the speed sensor is. The fact that the larger
the stimulus. the lower the threshold should surprise no one. This is true for spatial
frequency discrimination tasks as well (e.g. Anderson & Burr. 1987). vet does not
mean that the units one would wish to call SF units are infinitely large. The exper-
iment just described used the same general approach as that used by (Anderson &
Burr, 1987). Their data allowed them to identify the receptive field size at which the
nature of the integration mechanism shifted from including within-receptor integra-
tion to just being cross-receptor integration. The data presented above is not finely
sampled enough to allow for such a “knee-finding” operation, although the method
above could clearly be used to perform such an experiment, as a large effect size is
seen.

One interesting topic for further research would be to determine whether the
size and/or shape of speed-sensitive units varies with spatial frequency, temporal
frequency or speed. According to the psychophysical and computational results
mentioned above, which argue that speed computation is especially sensitive to tra-
jectories, one might expect that fast speeds should be measured most efficiently by
verv elongated units, while slow speeds could be measured adequately by units with

little elongation in the direction of motion.
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Chapter 7

Effects of Adaptation on

Perceived Speed

7.1 Introduction

At this point, the ability of the speed discrimination system to integrate over signal,
time and spatial extent has been demonstrated. While the data in Chapter 6 argues
for integration across cells with distinct receptive fields. and the data in Chapter 3
suggests integration in time, no evidence has been presented so far arguing for in-
tegration across the spatial and temporal filters described in the earlier chapters.
The experiments p;resented in this and the following chapter were designed to in-
vestigate this question, along the temporal frequency and spatial frequency axes
respectively. Chapter 2 presented the first stages of motion filtering as being per-
formed by spatiotemporal filters which are assimilated to a set of channels with two
kev characteristics, the channel’s spatial and temporal tuning. The models presented
in Chapter 3 are of special interest in this context because most of them propose that
the computation in speed consists of the comparison of outputs of several temporal

channels. For example, the Smith and Edgar (1990) model proposes that speed is
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computed by the ratio of a low-pass and a band-pass channel. The Grzywacz and
Yuille (1990) model views spead as the result of a computation based on the outputs
of large numbers of filters. The “estimation” strategy described in that model can be
viewed as the computation of speed over a potentially large set of temporal channels.

In a trivial way, finding evidence for integration across temporal channels in
speed perception is a fait accompli, as the very studies which identify the temporal
channels make use of speed discrimination experiments. The somewhat more specific
question which is addressed here is whether information from all temporal channels
is used in speed discrimination, and if so how this integrative process occurs. While
this type of endeavor is fairly easy to do in the domain of spatial channels, due to
their fairly narrow tuning, temporal channels are so broad that isolating any small
number of them is made much more difficult. The proposed temporal channels have
been characterized as lowpass or bandpass. Interestingly, while there is evidence
for multiple bandpass channels, no one has proposed multiple lowpass channels.
The lowpass channel is generally attributed the role of stationary, “pattern” vision
(Kulikowski & Tolhurst, 1973), while the bandpass channels are viewed as the core
of the motion system. Indeed, since their sensitivity does not drop to zero for 0 Hz,
it is possible that speed computation is based solely on the output of the bandpass
channels. Such a finding would have significant imp.licat:ions for the models of speed
which currently propose a role for the lowpass channel.

How can one test for the involvement of the lowpass channel in speed discrimina-
tion? In the Grzywacz and Yuille (1990) model for example, the lowpass channel can
be viewed as just another temporal channel, with no special status. While involve-
ment of the low-pass mechanism appears innocuous from the computational point of
view, it leads to an interesting experimental prediction—if the low-pass mechanism
is truly low-pass, and if it is an active participant in the speed perception process,

then it might be adaptable by stationary stimuli, and such adaptation should affect
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the perceived speed of subsequently presented stimuli. Thus looking at a stationary
display could affect perception of motion, a somewhat unintuitive prediction. This

hypothesis is the main focus of the experiments presented in this chapter.

7.2 Predictions and Previous Evidence

To examine what one might expect the consequences of adaptation to stationary
stimuli to be, let us consider first a temporal frequency estimation model similar
to that presented by Smith and Edgar. For the sake of simplicity, we will assume
two mechanisms, one low-pass and one band-pass. As discussed in Chapter 2, there
is disagreement in the literature on the number of band-pass mechanisms (see e.g.
Smith & Edgar, 1991; Mandler & Makous, 1984). but the argument presented here
can easily be adjusted to a model with more than one band-pass mechanism. Given
two broadly tuned filters as described in Figure 7.1, the temporal frequency of the
stimulus can be obtained by comparing the relative outputs of the two filters. Smith
and Edgar used a ratio to perform this comparison, and the model presented by
Grzywacz and Yuille uses a more complex plane-fitting process, but the basic result
is the same. If one considers “fast” temporal frequencies (as indicated by F in
Figure 7.1a). then the response of the band-pass channel is large and that of the low-
pass channel is small. On the other hand, for “slow” temporal frequencies (indicated
by S in the Figure 7.1), the low-pass response is large and the band-pass response is
small. In general, the ratio of the band-pass response over the low-pass response is
monotonically related to the temporal frequency, and if one assumes a fixed spatial
frequency, to speed. This is the intuition behind the Smith and Edgar model. Now,
let us consider what happens if one can selectively adapt the band-pass channel. After
such an adaptation, the relative output of the band-pass channel for any stimulus

in its bandwidth would be less than without such an adaptation (as indicated by
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the dashed sensitivity curve in Figure 7.1b). Thus. the ratio described above would
be smaller than it would be without the adaptation, corresponding to a decrease in
perceived speed. If one could selectively adapt the low-pass channel. then one should
reduce the relative output of the low-pass channel (see Figure 7.1c). which in turn
should result in an increase of perceived speed.

A review of the literature on the effects of adaptation on speed perception shows
that effects such as those described above have indeed been found, but that some

" effects which one would expect given the theory have not been reported.

The earliest investigations of the effect of adaptation to moving stimuli on per-
ceived speed established that the perceived speed of a moving stimulus decreased
with adaptation duration (Wohlgemuth, 1911; Gibson, 1937). Carlson (1962) inves-
tigated a broader range of stimulus parameters, and found that when the adapting
stimulus was faster than the test stimulus and in the same direction, the test stimulus
appeared slower. Scott, Jordan, and Powell (1963) extended this result to motion in
opposite directions, and found that when the test stimulus was in the opposite direc-
tion from the adapting stimulus, it appeared to move faster than without adaptation.
In an unpublished dissertation cited in Thompson (1981), Clymer (1973) reports that
after adapting to moving gratings, subsequent gratings appeared to move slower, ex-
cept in the case of slowly moving gratings, which causéd test gratings to appear to
move faster.

Thompson (1976, 1981) studied speed aftereffects under a broad range of view-
ing conditions. In most cases, adaptation to a moving grating caused subsequently
presented gratings to appear to move slower than they would otherwise. This is
consistent with the adaptation of the band-pass channel, as described above. Only
when the test grating moved in the opposite direction from the adapting grating, and
when the test grating moved at a temporal frequency under 1 Hz did the test grating

appear to move faster than it would without the adaptation. Thompson reported in
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Figure 7.1: In each of these three panels, the left graph displays the relative sen-
sitivity of a lowpass and bandpass mechanism, while the right graph schematizes
the relationship between the relative response and the temporal frequency. S and
F indicate slow and fast temporal frequencies respectively (see text). (a) Schematic
representation of the relative sensitivities of the low-pass and band-pass channels
before adaptation. The readout procedure from a given relative response to the
corresponding temporal frequency is indicated. (b) Sensitivity curves of the low-
pass and band-pass channels after selective adaptation of the band-pass channel (the
unadapted functions are shown in grey). The effect of adaptation is to decrease per-
ceived speed, as indicated in the right panel. (c) Sensitivity curves of the low-pass
and band-pass channels after selective adaptation of the low-pass channel. The effect
of adaptation is to decrease perceived speed, as indicated in the right panel.
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a personal communication (1996) that he had tried to elicit increases in perceived
speed using stationary gratings. but failed to obtain significant results.

The experiments presented by Smith and Edgar (1994) showed a similar set of
results: after adaptation to fast gratings, most gratings appeared to move slower
than they would otherwise, especially slow gratings. After adaptation to slower
gratings (down to 2 Hz), slow gratings still appeared to move slower than they
would otherwise, but fast gratings appeared to move faster than they would without
adaptation. Smith and Edgar fit their ratio model using both multiplicative and
subtractive adaptation, and found that the former always fit the data poorly. while
the latter could result in a good fit, but only if the adaptability of the band-pass filter
was assumed to be about an order of magnitude higher than that of the low-pass
filter.

Given the relative simplicity of the general model, it is worth considering why
one prediction (that adapting to high TF stimuli should yield decreases in perceived
speed) is readily obtainable, while the other (that adapting to very low TF stimuli
should yield increases in perceived speeds) is not easily elicited, or is only elicited
for high test speeds. Given the number of studies of the motion aftereffect, there
is likely an experimental reason why this effect has not been reported before. If
we assume that the low-pass channel does exist, then .the reason for this gap in the
literature has likely to do with the requirement that the low-pass channel be adapted
relatively more than the band-pass channel. To determine under which conditions
this differential adaptation might be obtained, the data of Anderson and Burr (1985)
are illuminating—their summary graphs are reprinted in Figure 7.2. The sensitivity
functions of the two channels are depicted for a range of temporal frequency, and
for three different spatial frequencies, from relatively low (0.1 cpd) to relatively high
(10.0 cpd) spatial frequencies. Two facts are worth noting. The first is that while

the band-pass channel clearly has a preferred range of temporal frequencies between
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Figure 7.2: Schematic functions depicting the sensitivities obtained via masking
experiments of the lowpass and bandpass systems as a function of temporal frequency,

for three different spatial frequencies (0.1, 1.0 and 10.0 cpd). From Anderson and
Burr (1985)

2 and 20 Hz, it has a non-zero sensitivity down to quite low temporal frequencies.
Thus in order to minimize the adaptation of the band-pass channel, it is important
to use as low a temporal frequency as possible. The second fact is' that the relative
sensitivities of the low-pass and band-pass channels at low temporal frequencies is
highly dependent on the spatial-frequency being used. Specifically, the higher the
spatial frequency, the greater the ratio between the low-pass channel sensitivity and

the band-pass channel sensitivity.

These two facts in effect dictated the stimulus parameters which are most likely
to vield the desired effect. and which were used in the experiments reported here. To

maximize the difference in sensitivity of the two channels (more precisely to maxi-
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mize the low-pass sensitivity while minimizing the band-pass sensitivity). stationary
gratings and a relatively high spatial frequency (5 cpd) were used?.

It should be noted that one cannot necessarily predict from the sensitivity curves
in Anderson and Burr (1985) the results of an adaptation experiment. Indeed. the
different channels could have different adaptability, meaning that even equating for
sensitivity, one channel might be more susceptible to adaptation than another. This

is the argument which Smith and Edgar appealed to in explaining their model fit.

The experiments presented in this chapter aim to test whether one can selectively
adapt a low-pass mechanism, and thus test whether this mechanism is an active
participants in the computation of speed. What types of results would provide

effective data for such a hypothesis?

It is not sufficient to show that after adaptation, gratings appear to move faster
than without adaptation, since this could be due to the selective adaptation of a band-
pass mechanism which had a lower “peak TF” than another band-pass mechanism?.
Thus such a result in isolation would not be evidence for the selective adaptation of
the low-pass mechanism, or of its contribution to the perception of speed. In general,
the ratio of perceived speed after adaptation over perceived speed before adaptation
is hard to interpret in isolation because of the lack of precise knowledge regarding

the number of temporal mechanisms and their tuning functions.

Similarly, it is not sufficient to show that slow gratings viewed after adaptation to

I'While our stimuli were stationary, no effort was made to have complete retinal stabi-
lization. Such a stabilization would have yielded extreme reduction in apparent contrast
as a result of photoreceptor adaptation.

2Clearly if this adaptation occurred with stationary gratings, then the mechanism could
be said to have low-pass characteristics—however if this mechanism is more sensitive to high
TFs than to stationary gratings, such as the band-pass mechanisms described in Figure 7.1,
it would not correspond to the “low-pass” mechanism, which has a monotonically falling
sensitivity function as a function of TF.
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stationary gratings appear to move faster than slow gratings after adaptation to fast
gratings. While this would be evidence for adaptation of the low-pass mechanism.
this adaptation could occur over the entire temporal frequency range. In this case.
one would expect slow gratings to speed up after adaptation more (proportionally)
than faster gratings, regardless of the temporal frequency of the adapting stimulus.

To demonstrate selective adaptation of the low-pass system due to low temporal
frequency adaptation, one needs to show that as one raises the adapting temporal
frequency from 0 Hz (stationary gratings) to higher values, the speeding-up effect
of adaptation on the perceived speed of slow gratings decreases. while the slowing-
down effect of adaptation on the perceived speed of fast gratings increases. This is
more easily explained by referring to a schematic data figure. Figure 7.3 displays the
required trend in the data. The y-axis corresponds to the ratio of perceived speed
after adaptation to the perceived speed for the same stimulus before adaptation.
Values greater than 1 indicate increases in apparent speed, while values less than 1
indicate decreases in apparent speed. While the relative position of the data points
relative to the y = 1 line is not critical to the argument, the change in slope as
one increases adapting temporal frequency from stationary to a higher temporal

frequency is crucial.

7.3 General Methods

Subjects DA and LW were the subjects used in this experiment.

The adapting and measurement procedures were the same for all adaptation ex-
periments. A trial consisted of an adaptation period, followed by alternating match-
ing and top-up adaptation periods, as described below. The top-up adaptation peri-
ods are required since the measurement phase lasts long enough that without them

the adaptation state would decrease while the measurements are being made.
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Figure 7.3: Ideal data showing selective low-pass filter adaptation. The solid curve,
labeled “Adapt High TF”, shows a decrease in perceived speed after adaptation
to high temporal frequencies, especially for low test temporal frequencies. After
adaptation to low TF stimuli (dashed curve), a perceived speedup is expected. The
relative position of the lines relative to the veridical speed percept (indicated by the
gray line) is not crucial—the change in slope between the dashed and solid lines is.

The adaptation period lasted two minutes, during which time the subject was
instructed to keep fixation on a narrow strip of dark cardboard which bisected the
oscilloscope vertically. To minimize the effect of retinal adaptation, the subjects were
told to keep fixation on the cardboard strip, but were allowed to move their gaze up
and down within the area of the strip. During this adaptation period, the adapting
stimulus covered one half of the display, while the other half of the display consisted
of a mean-luminance blank field. When the adapting stimulus was moving, it was

always moving away from the center of the display.

In the match period, the display consisted of two vertical gratings covering one
half of the display each, and moving away from the central dividing line. The sub-
ject’s task was to decide which half of the display was moving faster than the other.

Six one-second displays were used, after each of which the subject indicated which
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side moved faster using one of two buttons on the computer mouse. The user’s
response was used by the computer to guide a staircase procedure detailed below.
After six such one-second displays, the computer switched to a 15-second topup pe-
riod in which the adapting stimulus was presented again, in order to maintain the
adaptation level as constant as possible (the total duration of the adjustment period
is somewhat longer than six seconds due to the delay in user response). The topup
stimulus was identical to the adapting stimulus except that it was displayed for 15
" seconds instead of 2 minutes. Distinctive tones were played through the computer’s

speaker to indicate to the subject which phase the experiment was in.

Figure 7.4: Schematic representation of the stimulus.

The alternation between test and topup periods lasted until the staircase proce-
dure finished, which in most trials happened after one or two adjustment periods.

The staircase procedure consisted of a double staircase. One staircase started at
a value 50% higher than the match, while the other started at a value 50% lower
than the match. The step size for each staircase started at 30%, and halved at each
staircase reversal, but was not allowed to go below a 5% change (in other words
step sizes for each staircase followed the sequence 30%, 15%, 7.5%, 5%). The entire

procedure was considered terminated once both staircases had undergone at least 5
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Subject Test Freq. (Hz) Matched Freq. (Hz) Standard Error

DA 2 2.00 0.02
4 4.27 0.10
8 7.95 0.16
LW 2 2.07 0.02
4 3.75 0.07
8 7.58 0.07

Table 7.1: Pretest: Matched temporal frequencies with no adaptation, and associated
standard errors, for both subjects.

reversals each at the smallest step size.

7.4 Pretesting: Experiment 7.1

In order to measure changes in perceived speed, a pretest condition was run, which
consisted of the same matching procedure as outlined above, but without the pre-
ceding adaptation period. Three matches were obtained for each of the three test
temporal frequencies, for each observer. In this and all experiments in this chapter,
the order of the blocks within an experiment was randomized within a subject, and
the other subject ran the conditions in reverse order, to both minimize the size of,
and help detect. any learning effects or other ordering effects. No such effect was
found. In addition, the grating under user control in the matching task was randomly
the left or right grating, to detect any asymmetries. No such asymmetry was found
in either subject. The results for the pretest are indicated in Table 7.1.

The results of the pretest indicate that on average, the subjects are accurate in
their matches of TF, especially for the low TF, which is of specific interest in this
chapter. All of the matches reported in this chapter will be reported after normal-
ization by the corresponding pretest match listed in Table 7.1. Thus a perceived
speed of 1.0 would indicate that the match was exactly that obtained in the pretest,

a perceived speed of 2.0 would mean that the manipulation had resulted in a twofold
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speedup. It is important to remember that these are normalized values. thus are

unitless.

7.5 Effect of Adaptation to Stationary Gratings:
Experiment 7.2

This experiment was designed to establish the effect on perceived speed of adaptation
to gratings with the same spatial frequency as the test gratings. as a function of
adapting grating temporal frequency. The adapting gratings were at 0, 1, 2, 4 and
8 Hz. The test gratings were at 2, 4, and 8 Hz. All gratings in this experiment had
a spatial frequency of 5 cpd and were vertically oriented. The data are depicted in

Figure 7.5.

7.5.1 Results

The perceived speedups and slowdowns in Figure 7.5 are rich in effects. Let us
consider first the effect of adaptation to 4 Hz gratings (black bars). After adaptation
to such fairly slowly moving gratings, slow gratings appear even slower, while fast
gratings are not affected. This is consistent with and a replication of some of the
previously published results (e.g. Mandler & Makous, 1984), and is consistent with
adaptation of a bandpass channel. Contrast this data with the perceived relative
speeds after adaptation to stationary (0 Hz) gratings (white bars). After adaptation
to stationary gratings, all gratings appear to have sped up. This could be due to
two factors. Either the low-pass channel was adapted (as was our aim), or the
“most lowpass” of the bandpass channels has been adapted. However, if the latter
were the case, then the size of the effect should increase with test TF (as for 4 Hz

adaptation). That the effect does not increase is a sign that the bandpass channel is
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Figure 7.5: Perceived speed ratios for observers DA and LW.
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not responsible for that effect. One should expect the size of the effect to decrease as
the lowpass channel sensitivity (and hence adaptability) falls off. Our data indicate a
slight trend in the case of subject DA, and no significant change for subject LW This
would indicate that the adaptability of the lowpass channel is fairly constant up to
at least 8 Hz. This is consistent with other results from Welch & Jackson (personal
communication) showing sensitivity of the lowpass channel up to 20 Hz in masking
studies. The results for adapting TFs between 0 and 4 Hz are, appropriately enough,

intermediate between the two patterns just described.

7.5.2 Discussion

The data in Figure 7.5 show some of the required effects.
e Adaptation to stationary gratings results in apparent speedups.
e Adaptation to faster gratings results in apparent slowdowns

However, two predicted effects were not shown. The effect of adaptation to stationary
gratings is not significantly largest on slow gratings, and the effect of adaptation to
faster (4 Hz) gratings is not larger for fast test gratings than for slow test gratings.
The lack of the first effect has already been discussed, as is most likely due to the fact
that the lowpass channel’s sensitivity does not decrease until very high TF’s. The
lack of the second effect is most likely due to the fact that the fastest gratings used
were still relatively slow, at 4 Hz. This is consistent with the data from Thompson
(1981), which show that the effect of adaptation changes from being attributed to
low-pass adaptation to being attributed to band-pass adaptation only for adapting
TF's of 16 Hz or greater.

An interesting additional conclusion can be drawn from comparing the results of

adaptation to the 2 Hz gratings compared to 1 Hz and 4 Hz gratings. Indeed, after
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adaptation to 2 Hz gratings, test gratings at 2 Hz are significantly slowed down. while
4 Hz and 8 Hz gratings are not slowed down. This effect is not present either for
the lower adpating TFs or for the faster adapting TF of 4 Hz. This suggests that a
separate channel with sensitivity around 2 Hz has been adapted by the 2 Hz grating.
significantly more than a channel with lower preferred TF (as evidenced by the 0 Hz
and 1 Hz data) and than another channel with higher preferred TF (as evidenced by
the 4 Hz data). This is thus evidence for the presence of at least three channels—one
lowpass, affected by 0 Hz grating adaptation, one sensitive to the 4 Hz gratings. and
an intermediate one, with peak relative sensitivity nearer 2 Hz than either 1 or 4 Hz.

In summary, however, the data clearly indicate that adaptation to stationary
gratings affected speed perception, and the difference between the pattern of data
for stationary and 4 Hz grating argues that the low-pass channel is the mechanism

responsible for that effect.

7.6 Spatial Frequency Control: Experiment 7.3

In experiment 7.3, the spatial frequency of the gratings was kept constant at 5 cpd.
One possible reason why the apparent speed of gratings presented after adapting to
stationary gratings was greater than without adaptétion could be that the adaptation
resulted not in a change in the measurement of temporal frequency. but instead in a
change of the measurement of spatial frequency. If one assumes that the measurement
of speed is the ratio of temporal frequency and spatial frequency, then an increase
in apparent speed could be due to a decrease in apparent spatial frequency, with no
change in apparent temporal frequency.

To test this hvpothesis, the effect of adaptation to stationary gratings on the
perception of spatial frequency was measured, using a very similar paradigm, in Ex-

periment 7.3. The adapting stimulus was the stationary vertical grating, and the test
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Subject Condition Test TF (Hz) Matched Standard
Frequency (cpd) Error

DA Pre 2 5.145 0.034
8 4.755 0.134

Post 2 5.390 0.042

8 5.250 0.045

LW Pre 2 4.950 0.152
8 4.760 0.173

Post 2 5.064 0.124

8 5.424 0.127

Table 7.2: Spatial Frequency Control: Matched spatial frequencies before and after
adaptation to 0 Hz gratings.

stimuli were moving vertical gratings as in the previous experiment. The subject’s
task was to match spatial frequency, and the staircase procedure was adjusted to
modify the spatial frequency of the stimulus in the adapted field, as opposed to the
temporal frequency adjustments made in Experiment 7.2. These matches were made
both for a 120 sec adaptation, and without the adaptation, to allow again for the

possible existence of biases in the matching procedure.

7.6.1 Results

The matched spatial frequencies and standard errors for those matches are presented

in Table 7.2.

7.6.2 Discussion

As can be seen from the data in Table 7.2, the effect of adaptation on perceived
spatial frequency was to increase perceived SF a little in the case of 2 Hz gratings,
and more so in the case of 8 Hz gratings. Thus any model of speed perception
which relied on perceived spatial frequency as a step in the computation of speed

would have predicted that the perceived speed would have decreased after adaptation
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to stationary gratings. As our results show an increase, such models are made
improbable. The effect on 2 Hz gratings does not in fact appear to be robust. given
LW’s data. The effect on 8 Hz gratings is more interesting, but would require further
data before too much should be made of it. Regardless, it appears irrelevant to the

topic of discussion here.

7.7 Perceived Contrast Control

7.7.1 Experiment 7.4

Another potential confound in the Experiment 7.2 is that the result of the adapta-
tion could be due not to a shift in the computed temporal frequency, but instead
to a change in the perceived contrast, which in turn affects the perceived speed
(Thompson, 1982; Stone & Thompson, 1992). It is unlikely that contrast adaptation
is responsible for our results with low temporal frequency adaptation since the effect
of adaptation is to decrease apparent contrast, which in turn has been linked with
decreases in apparent speed (Thompson, 1981; Smith & Edgar, 1994), not increases
as reported in Experiment 7.2, except at very high temporal frequencies in some
experiments (but see Stone & Thompson, 1992 for a failure to replicate Thompson,
1982). Nevertheless, to rule out the influence of apparent contrast on our results
in Experiment 7.2, we performed a pair of control experiments. In Experiment 7.4,
the apparent contrast post-adaptation was measured in a contrast-matching task. In
Experiment 7.5, the effect of contrast on speed was measured. In Experiment 7.4,
observers adapted to vertical stationary gratings, and then matched the contrast of

moving test gratings.
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Subject Condition Test TF (Hz) Matched Standard
Contrast (%) Error

DA Pre 2 25.475 0.209
8 25.540 0.346
Post 2 20.815 0.396
8 22.030 0.371
LW Pre 2 23.855 0.240
8 25.175 0.332
Post 2 19.430 0.230
8 19.730 0.196
Table 7.3: Contrast Control: Matched Contrast before and after adaptation to 0 Hz
gratings.
Methods

The matching procedure used the same staircase as described for Experiment 7.1,
except that the stimulus parameter which the user controlled was the grating contrast

instead of its temporal frequency.

Results

The results for both observer’s contrast matches both with and without adaptation

to a 0 Hz grating for 120 sec are presented in Table 7.3.

Discussion

The results for both subjects (see Table 7.3) indicate that after adaptation, perceived
contrast dropped by an amount equivalent to a change of 20% or so in physical
contrast. The next experiment tested what consequences such a physical change in

contrast would have on perceived speed.
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Subject Test TF (Hz) Relative Perceived speed

DA 2 0.975
8 1.17

LW 2 0.955
8 0.64

Table 7.4: Contrast Control: Relative perceived speed between 25% contrast gratings
and lower contrast gratings (16% gratings for subject LW and 18% for subject DA)
after adaptation to 0 Hz gratings. Values lower than 1 indicate that the low-contrast
grating appeared to move slower than the higher contrast grating, and values greater
than 1 indicate that the low-contrast grating appeared to move faster than the higher
contrast grating.

7.7.2 Experiment 7.5

In Experiment 7.5, a standard matching paradigm without adaptation was used to
measure the effect of contrast on perceived speed using the contrast values obtained
in Experiment 7.4. The values chosen for the contrast of the match grating was the
lowest contrast match each observer gave. These were of 18% for subject DA and

16% for subject LW.

Results

The relative perceived speed (normalized by the pretest values obtained in Experi-

ment 7.1) for both observers are displayed in Table 7.4.

Discussion

The data in Table 7.4, indicate that for subject DA, the reduction in contrast led
to an apparent increase in speed of fast gratings and no change in the apparenty
speed of the slow gratings. This is the opposite effect from that which this control
was designed to test for (slow gratings moved faster and fast gratings did not).
Subject LW showed a different effect, so that fast gratings appeared to move slower,

while there was no effect for slow gratings. Again, these results do not support
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the hypothesis that the effects found in Experiment 7.2 are due to an effect on the

perceived contrast and a subsequent effect on perceived speed.

7.8 Afterimage control: Experiment 7.6

One final control experiment is needed. After adaptation to stationary gratings, one
could imagine that an afterimage is formed. While no subject reported seeing such
an afterimage®, probably due to the presence of small eye movements and the high
spatial frequency of the adapting gratings, it is possible that such an afterimage could
have been present but at a low enough levels that it was not spontaneously reported.
The effect of such an afterimage on speed perception is not fully specified in any
of the models discussed above, but one can imagine that the superposition of the
afterimage with the test gratings could vield beats in the image, which could in turn
be used to match speed. How these beats could yield the patterns of results described
for Experiment 7.2 is unclear. To test against this possibility, Experiment 7.6 was
performed, in which an “artificial afterimage” was simulated. Given that the purpose
of this experiment was to find out if such an afterimage due to adaptation could bias
speed perception, no adaptation was performed. Instead, a simple speed matching
task was performed, where the speed of a single grating was matched to a display

consisting of a moving grating and a stationary grating, superimposed.

7.8.1 Methods

The same matching procedure as in Experiment 7.1, except that one of the fields

had in addition to the moving gratings, a fixed grating of the same spatial frequency

3The afterimage referred to here is that created by vertical adaptation gratings, not
that created by the oscilloscope display itself, which was quite bright relative to the rest
of the room. and created a very noticeable contrast and color afterimage.
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Subject Test TF (Hz) Matched Speed Standard Error

DA 2 1.12 0.02
8 1.18 0.01
LW 2 1.16 0.01
8 1.00 0.03

Table 7.5: Afterimage: Relative perceived speeds with 5% afterimage superimposed.

as the test gratings, with a fixed contrast of 5%. This contrast results in much
higher perceived contrast than the eventual afterimage, since it was quite visible,
while the afterimage was never seen by observers. Thus this experiment is likely to

overestimate the effect of afterimages if any is found.

7.8.2 Results

The relative perceived speed (normalized by the pretest values obtained in Experi-
ment 7.1) of gratings matched to the gratings superimposed with the artificial after-

image are presented in Table 7.5.

7.8.3 Discussion

The data in Table 7.5 show the first effect which may provide an alternative expla-
nation to the effects of Experiment 7.2. Both observers show that the addition of a
stationary afterimage sped up the perceived speed of slow gratings. This effect was
also found for one observer for fast gratings, but not for the other observer. The
fact that the effect of test TF on this apparent speedup does not match the trends
observed in Experiment 7.2 seems to indicate that while an interesting effect, it does
not neatly account for the results in that experiment. Furthermore, the process by
which addition of a stationary grating results in apparent speeding up of a moving
gratings is far from obvious. One possibility is that a motion repulsion effect is re-

sponsible. According to such an account, the presence of the very low grating results
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in segregation of the two gratings by the motion analysis system. which results in
enhanced separation between the two estimates of speed, thus in an apparent speed
up.

To test the motion repulsion effect. a final control experiment was run on subject
LW, using 1 Hz gratings instead of 2 Hz gratings. Thus the perceived speed of
both 2 Hz and 1 Hz 10% gratings was measured in the presence of a 5% afterimage.
The relative perceived speed of the 2 Hz grating was 1.10, replicating the speed up
observed in the last experiment, but the relative perceived speed of the 1 Hz grating
was 0.96, thus showing that the afterimage effect disappeared with 1 Hz gratings.
As a final control, the basic adaptation effect was run again on the same subject for
1 Hz gratings, and yielded an apparent speed up of 15%, showing that while the basic
effect of adaptation to stationary gratings applies to 1 Hz gratings, the afterimage
effect does not.

In conclusion, all of the control experiments above either showed no effect, showed
effects which would tend to go counter the main effect under study, or showed effects

which depended on stimulus parameters in ways that the main effect did not.

7.9 General Discussion

The study of motion perception is generally viewed as the study of the perception
of moving stimuli. In contrast, spatial vision is generally viewed as the dealing with
aspects of vision best studied with stationary stimuli. The results presented here
indicate that these two domains are neighbors rather than opposites. Our results
indicate that exposure to stationary displays can affect the perception of moving
displays; more precisely, exposure to stationary displays can affect the perceived
speed of moving displays. These results should be viewed as fitting quite coherently

with the rest of the data on adaptation and speed perception. For example, the
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results of Thompson (1976, 1982), Schrater and Simoncelli (1993) are all compatible
with these data. Even the Smith and Edgar (1994) data are consistent with the
results on stationary adaptation—the bandpass channel could very well be more
adaptable than the lowpass channel. The fundamental novel result is that the lowpass

channel can be adapted, provided the stimulus configuration is chosen carefully.
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Chapter 8

‘Spatial Frequency Integration

8.1 Introduction

As should be clear by now, observers can readily estimate the retinal speed of mov-
ing visual stimuli. In any of the models described in Chapter 3, a translating visual
display will results in activation of a set of spatial and temporal frequency tuned
mechanisms. The mechanisms which will be most strongly activated will be those
with spatial frequency tunings which correspond to the spatial frequencies present
within the spatial Fourier spectrum of the display, and with temporal frequency
ranges which correspond to the rate at which the spatial structure of the display
passes by a given retinal locus. Thus a given stimulus is processed in parallel by a
range of mechanisms, each of which analyze a restricted region of the stimulus’ spa-
tiotemporal frequency profile. Outside of the laboratory, however, all visual objects
have rich spatial frequency structure, and therefore activate broad distributions of
such mechanisms. Furthermore, a translating object moving at a given speed will
cause activity across several mechanisms with SF and TF frequency tunings corre-
sponding to that speed. Given this bias in the distribution of activity across these

mechanisms (along lines of same speed), it would seem efficient for the visual system,
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Figure 8.1: Schematic representation of the peaks of the filters relatively most sensi-
tive as a function of the spatial frequency (horizontal axis) and temporal frequency
(vertical axis). Only the peaks of the tuning functions are represented by the con-
centric ovals, and the filter sensitivity is non-null over a large range of the SF/TF
map (especially along the TF dimension). Three different stimuli are represented
by shaded pairs of mechanisms. The angle between the best fitting line and the
abscissa corresponds to the speed of the stimuli. The dark gray mechanisms will not
be activated by the same stimulus, since they correspond to very different speeds.

when computing speed, to pool signals which correspond to a given speed, but not
signals which correspond to different speeds (see Figure 8.1). We refer to such a
pooling process as integration. This chapter reports the results of psychophysical
experiments testing whether when computing speed, the human visual system in-
tegrates information corresponding to a given speed but distributed across spatial

frequencies, temporal frequencies and orientations.

As mentioned in earlier chapters, the first stage of processing of visual informa-
tion is assumed to be filtering by mechanisms tuned in spatial and temporal frequen-
cies. These mechanisms are modeled as linear integrators of information over their

spatial and temporal frequency range. Given that by definition these mechanisms
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integrate information within their frequency tuning ranges. experiments testing for
speed-specific integration must take into account the possibility” that any observed
integration is due to within-mechanism integration. This can be done by using com-
ponent stimuli which are known to be well outside the tuning regions of the elemen-
tary mechanisms. Estimates for the spatial-frequency bandwidth of the mechanisms
(defined as the full width at half-height of the sensitivity function) depend on the es-
- timation method used, but typically are found to be between 1 and 2.5 octaves (for a
review, see Olzak & Thomas, 1986). Thus in order to find evidence of speed-specific
integration across mechanisms, gratings of very different spatial frequencies must be
used. In the experiments reported below, one grating had a spatial frequency of
0.5 cpd and the other had a spatial frequency of either 3 or 6 cpd. corresponding
to SF separations of approximately 2.5 and 3.5 octaves, which places them in well

separated spatial frequency channels (especially for the 0.5/6 cpd combinations).

The predominant model of analysis of spatial patterns is one of narrow-band
mechanisms which can be thought of as separate neural pathways. Indeed, there
is strong evidence for the notion of separate pathwa;vs for each spatial frequency
band, both psyvchophysically (ézirhﬁbell & Robson, 1968) and physiologically (De-
Valois et al., 1986). If one takes this model as a working hypothesis, then to look for
evidence for integration across spatial frequencies, one can measure speed discrimina-
tion thresholds for a single low spatial frequency grating, for a high spatial frequency
grating, and then for a compound grating with both frequency components—the
relative performance in the last condition relative to the other two could then be

informative regarding both whether such an integration occurs, and if so, what type

of integration it consists of.
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8.2 Methods

In all the experiments described in this chapter. the experimental setup was the
same. The stimuli were sinusoidal gratings generated by the Picasso function gener-
ator. The stimuli consisted either of a single low spatial frequency grating at 0.5 cpd.
a single high spatial frequency grating at either 3 or 6 cpd. or both gratings superim-
posed. The speed of the gratings was controlled by setting the phase of each grating
at each frame. The average duration of the stimuli was set at 120 ms, but any given
stimulus had a duration which was chosen randomly at each trial from a distribution
of durations ranging from 100 ms to 140 ms, so as to reduce the usefulness of the
distance traveled by the gratings as a cue to speed. Furthermore. since apparent
speed can be influenced by contrast, the contrast of the low spatial frequency grat-
ing was chosen at each trial from a distribution ranging. depending on the observers,
from 2.5% to 5%, 3% to 6% or 4% to 8% contrast. The contrast of the high spatial
frequency was a variable manipulated in each experiment as will be described be-
low, but it was constant throughout a block, so that the contrast of the high spatial
frequency grating was also chosen from an octave-wide range within a given block.
The data from six observers are reported below. Subjects DA. EKF and LW were
aware of the aims of the experiments, and subjects MI, DV and AD were students
naive as to the aims of the experiment. LW, DV, MI and AD are emmetropes, and
EKF and DA are myopes but wore their normal optical corrections throughout the
experiments. All observers had extensive practice in making speed discrimination

judgments under similar conditions prior to data collection.

Speed discrimination thresholds were obtained using the Probit method described
in earlier chapters, using a mean speed of 2°/sec for most conditions and 1°/sec in
some conditions. Each data point in all discrimination experiments correspond to

the means of thresholds estimated with between 150 and 600 trials.
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8.3 Experiment 8.1: Integration across spatial fre-

quencies

Experiment 8.1 examined whether observers were able to use information from both
spatial frequency ranges when making speed discrimination judgments. In this exper-
iment, both gratings were vertically oriented and moved horizontally—the direction

of motion (leftward or rightward) was chosen randomly on each trial.

Any given block was randomly chosen from one of three conditions, counter-
balanced across blocks. In one condition (Low SF), only the low spatial frequency
grating was displayed, and a speed discrimination threshold was obtained for that
grating alone. In the second condition (High SF), only the high spatial frequency
grating was displaved, and a second speed discrimination threshold was obtained,
for it alone. In the third condition (Compound), both gratings were displayed and
a speed discrimination threshold for the compound gratings was obtained. In this
experiment, when both gratings were displayed they both moved at the same speed
and in the same direction, and the ratio between the contrast of the high spatial
frequency grating and that of the low spatial frequency grating was kept constant
(for some observers both gratings always had equal contrast. and for the remaining

observers the high SF grating was always at twice the contrast of the low SF grating).

Speed discrimination thresholds were averaged within a condition for each ob-
server. The standard error for the estimate of the threshold was computed from the
standard errors provided by the Probit fit algorithm. The data for Experiment 8.1
are plotted in Figure 8.2. In this and all subsequent plots, the thresholds indicated
are the thresholds in speed (°/sec). Since the reference speed was 2°/sec, Weber
fractions are half of the plotted results. In some cases, the High SF' condition was

too difficult, and observers were unable to make speed discrimination judgments, or
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the Probit procedure was unable to estimate their thresholds. Those conditions are
indicated with the bars which reach ceiling and have no error bars. indicating that
the threshold was too high to be measured using the technique employed here.

The basic result from these data is that under these low contrast. short duration
conditions, 1) speed discrimination for 0.5 cpd gratings is quite poor (corresponding
to Weber fractions of up to 50% depending on the observers). 2) speed discrimination
for the 3 and 6 cpd gratings is even worse (often not measurable). and 3) speed
discrimination for the compound gratings is significantly better than either of the
single grating conditions, yielding lower thresholds.

Given the assumption described above of independent processing by mechanisms
with relatively narrow spatial frequency tuning, these data suggest that there is
indeed pooling of information across spatiotemporal filtering mechanisms when doing

speed perception.

8.4 Experiment 8.2: Integration across orienta-

tion differences

Integration across spatial frequency ranges can be related to the fact that real objects
have a broad spatial frequency spectrum. and that speed information about an object
is available throughout their spectrum. If one considers objects which are not just
translating in the frontoparallel plane but rotating in the frontoparallel plane or
looming towards the observer, it should be clear that speed information about the
object’s motion is available at many orientations, and under some circumstances (like
the rotation in the picture plane and the looming described above), information about
the speed of an object (or, equivalently, self-motion) can span many orientations.

Experiment 8.2 examined whether the apparent ability of the visual system to pool
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Figure 8.2: Results from Experiment 8.1. Discrimination thresholds are displayed
for each of three contrast conditions. (Continued in next figure)
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signals over wide ranges of spatial frequencies could be extended to deal with differing
orientations. The experimental conditions were the same as in Experiment 8.1.
except that in the Compound condition, the orientation of the high spatial frequency
grating was chosen to be one of 0°, 90° or 180°. When the angle was set to be 0°.
the conditions were identical to those used in Experiment 8.1. When the angle was
set to be 90°, the two gratings were in a plaid configuration (it should be noted that
because of the large difference in spatial frequencies, these gratings did not cohere
into a rigid plaid, and were instead perceived as sliding gratings). When the angle
was 180°, the two gratings had identical orientation (vertical). but moved in opposite
directions. Their speeds were always identical in a given trial. and varied across trials

as in Experiment 8.1.

Means and standard deviations for the speed discrimination expressed in Weber

fractions were computed as in Experiment 8.1 and are plotted in Figure 8.4.

This experiment vielded somewhat bizarre results. Subject LW showed basically
no effect of the orientation of the high spatial frequency grating, with improved
performance (over the single grating condition) even for gratings going in the opposite
direction. Subject S1 showed the same lack of dependence on the angle of the high
SF component. Subjects DV and VA, on the other hand, could not perform the
speed task when the orthogonal high spatial frequency grating was added (data not
shown). Thus for some observers, the angle of the high SF grating is irrelevant and its
presence is all that is required for the improvement in performance, while for others,
the presence of a 90° grating is highly disruptive and results in worse performance.

Discussion of these results is deferred until later.
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Figure 8.4: Results of Experiment 8.2. Discrimination thresholds are displaved for
the low SF grating alone, the high SF grating alone (not depicted for subject LW,
as it was not measureable, and for various compound gratings, with angles between
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8.5 Experiment 8.3: Correlational variations

The results from Experiment 8.1 are easily accomodated by the plane-fitting model
of Grzywacz and Yuille (1990), as described in Chapter 3. Indeed. the stimulus pa-
rameters were chosen to vield informational structure in the displays which should
enhance the system’s ability to perform the plane-fitting mechanism described by
Grzywacz and Yuille. One natural assumption to make about the plane-fitting pro-
cess is that the best distribution of activities (that likely to yield the most accurate
speed estimate) should in fact correspond to a plane which passes through the origin
in the spatiotemporal frequency plane. Experiment 8.3 tested this assumption of the
model, by varying the correlational structure of the stimuli across spatial frequency
bands. Specifically, the relationship between the information available in the high
SF band and that available in the low SF band was varied across conditions. Two
new conditions were used. the ‘anticorrelated’ and ‘uncorrelated’ conditions. In the
‘anticorrelated’ condition, the speed of the high SF grating was chosen so that the
correlation between the high SF speed and the low SF speed was —1: on a trial in
which the speed of the low SF grating was greater than the mean speed, that of the
high SF grating was lower than the mean speed, and vice versa (see Figure 8.5 be-
low). In the ‘uncorrelated’ condition, the speed of the high SF grating was chosen at
random (but from the same distribution as in Experiment 8.1), so that it could not
provide anyv useful information regarding the correct answer on a given trial. More
precisely, on half of the trials it provided useful information, and on the other half
of the trials it provided misleading information. In this experiment, feedback was
always determined by the actual speed of the low SF grating, which was the most

salient part of the stimulus. and which observers reported “using” to do the task.

Means and standard deviations for the speed discrimination expressed in Weber

fractions were computed as in Experiment 8.1, and are plotted in Figure 8.6, along
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Figure 8.5: Schematic of the speeds of the two gratings in a given block for each
condition. In the correlated condition both speeds covary with a correlation of 1—
thev both track the same path. In the anticorrelated case, they have a correlation
of —1, and in the uncorrelated case, the two paths are independent.

with the means obtained for the low SF grating alone (to provide a reference point
showing no integration), and the Compound condition of Experiment 8.1 (to provide

the reference point corresponding to theoretically maximal integration).

The data from Experiment 8.3 appears to argue that observers can sometimes use
either the anticorrelated signals (Subject VA) or the uncorrelated signals (Subject

DV') as well as the correlated signals.

These results appear to challenge the assumption described above that the best-
fitting plane for speed estimation must pass through the origin of the spatiotemporal
frequency space, and instead argue for a model in which speed estimates are per-
formed within a spatial frequency band. and then integrated across spatial frequency
bands in a task-specific manner—indeed, the data show (for most observers) very
little if any decrement in performance when the correlation was negative (which cor-
responds to highly unnatural correlational structure) relative to the more ecological

positive correlation among signals.
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8.6 Experiment 8.4: High Contrast inhibition

All of the experiments presented thus far argue for a highly efficient speed compu-
tation system which is somehow able to integrate information across large spatial
frequency ranges, orientation ranges of up to 180° even pick up sometimes on nega-
tive correlations among signals in separate spatial frequency bands. Experiment 8.4
examined whether the mechanism under study is equally able to integrate informa-
tion across contrast ranges. It examined the effect of varying the contrast of either
grating on the ability of observers to perform speed discrimination in the Compound
condition described in Experiment 1. Experimental conditions are the same as those
used for Experiment 1, except that the contrast of the low or high spatial frequency
grating was varied across blocks. When the low spatial frequency grating’s contrast
was varied, the contrast of the high spatial frequency grating was randomly chosen
from the range of 2.5%-5% or 5%—-10% as in Experiment 8.1, and when the high spa-
tial frequency grating’s contrast was varied, the contrast of the low spatial frequency
grating was chosen from the range of 2.5%-5% contrast, again as in Experiment 8.1.
Because the gratings were not far above detection threshold, only conditions corre-
sponding to increases in contrast were used (making the gratings invisible in some
trials would change the task to a detection task, and thus make the results hard
to analvze). In the first set of conditions, the contrast of’the low SF grating was
multiplied by a factor of 2, 4 or 8 across blocks. In the second condition, the contrast
of the high SF grating was multiplied by a factor of 0.5, 1, 2, 4, 8, 16 and 32 across

blocks.

Results are plotted in Figures 8.7 and 8.8 for 3 observers. Let us consider first
the results when the contrast of the low SF grating is increased (Figure 8.7). As
can be readily seen, performance increases (thresholds drop) and appears to plateau

with very high contrasts. This is hardly surprising, as all models would predict that
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Figure 8.9: Speed discrimination thresholds for compound gratings as the contrast
of the high SF grating is varied (continuation from previous figure).

the information available in the display should be monotonically related to contrast
energy. Consider now the results when the contrast of the high SF grating is increased
(Figure 8.8). For all observers, while there is a improvement in performance for low
contrast high SF gratings (as discussed in Experiment 8.1), increasing the contrast
of the high SF grating beyond a certain point results in a decrement in performance
(For subject DV this decrement appears not to hold for even larger contrasts). This -
decrement in performance for high contrast signals is paradoxical—it is important to
remember that for all the conditions depicted in Figure 8.7 and 8.8 the low spatial
frequency grating is always available, at a fixed contrast range. Thus any logical
integration rule should at worst do as poorly in the Compound condition as in the
Low SF alone condition. It appears that the presence of a high contrast, high spatial
frequency stimulus can mask, or inhibit, the signal due to the low contrast, low

spatial frequency grating, within the context of a speed discrimination task.
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8.7 Experiment 8.5: Masking revealed by detec-

tion thresholds

One obvious question which arises given the results in Experiment 8.4 is whether the
masking effect of high SF gratings on low SF grating is measurable in a detection
task. As described earlier, the standard model of spatial frequency analysis holds
that stimuli with such widely separated frequency content should be processed by
independent mechanisms, but adaptation studies have suggested that rather than
being independent, spatial frequency channels in fact interact via a tonic mutual
inhibition (DeValois, 1977). To establish whether this inhibitory effect is the source
of the loss in performance for high contrast high SF gratings, a detection experiment
was run. Detection threshold for the low SF grating was measured with a variety
of contrasts for the masking high SF grating using a one interval, two alternative
forced choice paradigm. The stimulus duration and temporal frequencies were the
mean values of those used in Experiment 8.4. In this experiment, observers were
presented with a set of trials in each repetition of each condition. In each trial, a 120
msec stimulus was presented after a 500 msec blank period. A trial could contain
either both the low spatial frequency grating and the high spatial frequency grating
(the test trials), or just the high spatial frequency grating (the catch trials). A given
trial had a 50% chance of being a test trial, and a block terminated when 35 test
trials had occurred. The responses to the test trials were used to control a QUEST
adaptive threshold estimation procedure (Watson & Pelli, 1983) so that the contrast
of the low SF grating in the test trials was that at which observers were expected to
be 92% correct. Observers indicated whether they had detected the low SF grating
in a given trial by using one of the two mouse buttons. Incorrect responses (false

alarms, i.e. “Yes” responses on catch trials, and misses, i.e. “No” responses on test
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trials) were indicated using computer-generated beeps. This procedure yielded the
contrast of the low SF grating required for a detectability corresponding to a d’ value
of 2. Threshold detection contrasts were measured for each observer twice at each
of 5 values of the high SF contrast (0, 5%, 10%, 20%, 40%). Results are plotted in
Figure 8.10.

As can be seen from examination of Figure 8.10, detection thresholds for the
low SF grating was influenced by the presence of the masking high SF grating, with
threshold rising from 1.6%-1.8% contrast when no mask is present to 2.1%-2.8%
contrast in the presence of a 40% masking grating.

These data are consistent with the DeValois results. It is noteworthy that the
separation in octaves between the gratings used in this experiment (3.5 octaves ap-
proximately) happens to be quite similar to the separation in frequencies at which
DeValois found maximal effects of adaptation on detection ability. It should be noted
however that our spatial frequencies were quite different from hers, since she adapted
to gratings at 1.19 cpd, while the corresponding gratings in our experiments were

those at 0.5 cpd.

8.8 Experiment 8.6: High SF Grating as Mask

Can a single interaction account both for the results of experiments 8.1 through 8.3
on one hand. which seem to argue for a cooperative, integrative interaction, and 8.4
and 8.5, which seem to argue for a competitive, inhibitory interaction? As men-
tioned earlier, DeValois (1977) has argued that there is a tonic inhibitory interaction
among channels, and explains her data showing increases in SF discrimination 3
octaves away from the frequency at which an adapting grating was presented by
suggesting that the adaptation of mechanisms tuned to the adapting grating damp-

ens their inhibitory action on the other mechanisms. The high contrast results of
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Figure 8.10: Detection thresholds for three observers for the low spatial frequency
grating, as a function of the contrast of the masking, high spatial frequency grating.
Thresholds estimated for d' = 2, using QUEST. (Continued in next figure)
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Figure 8.11: Detection Thresholds for three observers for the low spatial frequency
grating, as a function of the contrast of the masking, hign spatial frequency grating.
Thresholds estimated for d' = 2, using QUEST. (Continuation of previous figure)

Experiment 8.4 can be viewed in a similar light—if one assumes that the inhibitory
interaction suggested by DeValois is proportional to mechanism activity, then one
can consider an explanation for the data not in terms of various kinds of integration
across mechanisms, as originally conceived and described in the introduction, but
instead as a nonlinear effect resulting from a single inhibitory mechanism. Were this
to be the case, the information about speed which is present in the high SF band
should be irrelevint. The “uncorrelated” condition in Experiment 8.3 seems to argue
against this explanation—however, it should be noted that in that experiment, the
high SF band provides variation across trials, which very well might be construed by
the visual system as information, albeit information which is decidedly unhelpful on

average in solving the task.

To test the hypothesis that the main effect of the high SF grating is that mediated
by this cross-mechanism inhibition, a final experiment was run which was a slight

modification of Experiment 8.3. A single new condition was added, in which the
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speed of the high SF grating was held constant at the mean speed of 2°/sec through-
out all trials. Thus it provided no information regarding the speed discrimination
task, helpful or otherwise, but presumably resulted in the same amount of inhibi-
tion as the grating used in Experiment 8.1. Speed discrimination thresholds were
obtained for the single low SF grating condition, the compound/correlated condition
(both replications of Experiment 8.1), and the new condition, in which the speed

of the high SF grating was always 2°/sec. Results are plotted for two observers in

‘ Figure 8.12.

The data indicate that the addition of the constant-speed high SF grating re-
sulted in an improvement in performance which was in this case better than that
vielded by adding “useful” speed signals in the high SF band!. Thus, integration of
information is most likely not the source of the improvement seen in Experiments
1 through 3, and instead a non-specific interaction between SE channels is respon-
sible, which yields increases in performance for low levels of contrast, and decreases
in performance for high levels of contrast. It should be noted that in many of the
experiments with low contrast high SF gratings, but in this experiment especially,
observers, when debriefed, reported not knowing that there were differences between
the various blocks they had just run. It is striking to see that such a subtle change in
the perceptual quality of a stimulus can have measureable changes in performance,

especially given the lack of “information” in the mask.

1One might wonder why the replication of Experiment 8.1 did not work—the correlated
condition did not improve discrimination performance, as it did in that experiment. This
could be due to the fact that the contrast of the high SF grating was fairly low (equal to the
low SF grating, as opposed to twice as large in most of the conditions of Experiment 8.1).
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Figure 8.12: Speed discrimination threshold is plotted as a function of the spectral
content of the stimuli.
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8.9 General Discussion

The results described of all six experiments reported above can be broadly catego-
rized into two general effects: increases in performance in speed discrimination due
to the addition of a low-contrast stimulus component (as in Experiments 8.1, 8.2,
8.3 and 8.6), and decreases in performance due to the addition of a high-contrast
. but otherwise identical stimulus component (as in Experiments 8.4 and 8.5). Can
both of these results be explained adequately within the framework described in the
introduction? As mentioned above, the standard model of processing of spatial pat-
terns assumes a bank of relatively narrowly tuned (about 1-2 octave bandwidth),
independent mechanisms (e.g. Pantle & Sekuler, 1968; Blakemore & Campbell,
1969). There are generally two sub-assumptions contained within the assumption of
independence—independence of noise, and independence of signal. The first states
that the noise in one mechanism is not statistically correlated to the noise in any
other channel—indeed, when the noise between two channels is correlated, perfor-
mance of an observer which assumes independent noise sources decreases, as the
correlated noise tends to be mistaken for signal. The assumption of independence of
signals is that the signal present in one channel will not affect the response of another
channel. This assumption has been shown to be not entirely valid, and several re-
ports indicate the presence of a mutual, tonic inhibition between mechanisms tuned
to frequencies up to 3 octaves apart (e.g. DeValois, 1977, and see a review in Olzak
and Thomas, 1986). Can this inhibitory interaction among SF channels account for

the data?

Consider first the results of Experiment 8.5 on detection thresholds, which shows
the most straightforward effect of inhibition: a decrement in performance. If one as-
sumes that there is a weak inhibition between mechanisms tuned to widely separated

spatial frequencies, then this result is easily explained, as described in Figure 8.13.
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Figure 8.13: Effect of high SF inhibition on the tuning function of the mechanism
responsible for the detection of the low SF grating.

The detection threshold for a 0.5 cpd can be directly related to the sensitivity of the
mechanism whose sensitivity peak is at 0.5 cpd. Inhibition can be viewed as either
a subtractive or a divisive influence on the tuning function of the mechanism—the
tuning function in Figure 8.13 uses a divisive inhibition scheme for illustrative pur-
poses, but a subtractive mechanism yields the same effect—a lower sensitivity peak
at 0.5 cpd means that a larger signal is required for reliable detection—thus the
increase in detection threshold.

Consider now the case of speed discrimination. We will assume for this discussion
that discrimination is performed using a set of mechanisms tuned in both spatial and
temporal frequencies, but otherwise like the line-element model of Wilson (see e.g.
Wilson & Gelb, 1984). In this model, the stimulus is analyzed by a bank of processing
pathways. Each pathway consists of a mechanism tuned in spatial frequency and

orientation. The output of each mechanism which undergoes a contrast nonlinearity,
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has Gaussian noise added to it, and then is used to perform the discrimination. This
model is able to account for a variety of spatial discrimination data, hence it appears
to be a good starting point for the explanation.

Discrimination ability can be intuitively related to the amplitude of the difference
in output of a set of mechanisms to two slightly different stimuli. For example,
consider two gratings under the conditions used in Experiment 8.1, Low SF condition,
which are just discriminable (i.e. so that their speeds are sufficiently different that
their discriminability corresponds to a d’ = 1). Consider the responses of differently
tuned mechanisms to these two stimuli. Clearly, if they are above threshold (which
they are in the experimental conditions in question), the response of the mechanism
which has peak tuning at 0.5 cpd and 1 Hz will not differ much whether one stimulus
is presented or the other. Maximal differences in responses will be in by the ‘off-
frequency’ mechanisms, which are tuned to either lower or higher values of spatial
and temporal frequency (Regan & Beverley, 1983). Thus we can consider as the
most important mechanism for discrimination at a given speed the response of a
mechanism which is tuned slightly “off” the mean stimulus properties.

The contrast nonlinearity which occurs before the discrimination stage is such
that differences in small input signal get amplified (the nonlinearity starts out accel-
erating), while the same differences in large input signals get minimized (the non-
linearity ends up compressive). The specific shapes which have been proposed for
this nonlinearity vary slightly among authors (see e.g. Legge & Foley, 1980; Foley
& Legge, 1981; Carandini & Heeger, 1994; Carandini et al., 1996), but for example
Legge and Foley have proposed a function which has the “bend”, or “knee” at around
1.5% contrast. In other words, for contrasts lower than 1.5%, the function is expan-
sive, and for contrasts above 1.5% the function is compressive. Now suppose that
in the Low SF condition, the response of the off-frequency mechanisms corresponds

to the compressive part of the non-linearity. The high SF grating at low contrast
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Figure 8.14: How low-grade inhibition can result in increases in discriminability (or,
conversely, lower discrimination thresholds). The open arrows indicate the testing
and adapting frequencies, while the filled arrow indicates the cross-spatial frequency

inhibitory interaction.

will, according to DeValois (1977), inhibit all spatial frequency channels, including
those at and around 0.5 cpd. The effect of this inhibition on the on-frequency mech-
anism will be as described above, and accounts for the detection data. The effect on
the off-frequency mechanism will be to shift the tﬁning function of the mechanism
down towards lower responée rénges. If one supposes that this .shift in resi)onse is
such that the response by the off-frequency mechanism to the two stimuli now lies
“below the knee” of the contrast nonlinearity, then the same physical difference in
the stimuli will result in greater response differences, thus in greater discriminabil-
ity (conversely a given discriminability will be achievable with a smaller physical
stimulus difference). - This argument is described graphically in Figure 8.14.

How can this framework be extended to deal with the high-contrast effects seen

in Experiment 8.47 There are two possible mechanisms which can be invoked to
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explain why discrimination performance can worsen when high contrast high SF
gratings are used. The first is that the inhibition is strong enough to completely
suppress the response of the off-frequency to at least one of the two gratings. In
such a case (illustrated in Figure 8.15), discrimination can be considered to reduce
to a detection task by the off-frequency mechanism of one of the two stimuli, and
that task can be made increasingly difficult by increasing the amount of inhibition
applied to to that mechanism. This explanation has the admittedly weak backing of
the subjective reports of some observers, who claimed that with the high contrast
high SF mask, while they felt they could see the low SF grating (the on-frequency
mechanism is still sensitive enough), they were unable to judge how fast it was
going (the off-frequency mechanisms, according to this explanation, were supressed).
The schematic makes it clear that subtractive inhibition is assumed in this case.
If instead, divisive inhibition is assumed, then the discrimination performance can
be affected without the detectability necessarily vanishing. This is illustrated in
Figure 8.16. In this case, the effect of the inhibition is to decrease the slope of the
affected mechanism, so that a greater change in stimulus in needed in order to yield

a given change in mechanism response.

8.10 Summary

The aim of this research was to investigate whether the visual system could integrate
across spatial frequency bands when doing speed perception. Indeed, my first under-
standing of these effects (Ascher, Welch, & Festa, 1996; Ascher, Welch, & Grzywacz,
1997) was that indeed this was occurring, and that the high contrast inhibition was
due to either an attentional effect, contrast-based segregation of the signals into two
distinct signal pools, or to some unexplained sampling artifact. The fact that perfor-

mance is equally good or better when constant speed high SF masks are used as when
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Figure 8.15: Schematic of how large inhibitions of the off-frequency mechanisms can
result in a decrease in performance, using subtractive inhibition. Several mechanisms
sensitive to the adapting stimulus have reduced sensitivities, which results in the slope
of their sensitivity to decrease at the frequency of the adapting stimulus.
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Figure 8.16: Schematic of how large inhibitions of the off-frequency mechanisms can
result in a decrease in performance, using divisive inhibition. Several mechanisms
sensitive to the adapting stimulus have reduced sensitivities, which results in the
slope of their sensitivity to decrease at the frequency of the adapting stimulus.

perfectly correlated high SF gratings are used argues to my mind convincingly that
if there 1s suck; an integ'ré‘t-;-ion, it is not the main souéce of the improvements in per-
formance that we report. Consequently, a model was presented, which, by appealing
to the effect of the contrast nonlinearity as modulated by inter-mechanism inhibi-
tion, accounts for both patterns of behavior. That said, some of the data requires
further discussion given the analysis presented above. Recall that in Experiment 8.3,
different observers behaved differently for the uncorrelated stimuli and for the anti-
correlated stimuli. In other words, the fact that the high SF grating varied its speed

across trials did have a deleterious effect on performance. It should be noted that
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these displays are somewhat odd, in that the gratings appear to “cohere” on some
trials (when the speeds of the two gratings happen to be similar), while in other
trials in the same block, appear quite distorted (when the speeds of the two gratings
happen to be quite dissimilar). Some observers, however, were not affected by these
misleading trials. It is possible that with practice, the apparent loss in performance
due to the speed signal yielded by the high SF stimulus could disappear. Regardless,

- the fact that a high SF grating is affecting low SF grating performance in either
direction is sign of cross-channel interactions.

All of the experiments described above are consistent in one main point, that is
that, at least in the context of a speed discrimination task, and under these admit-
tedly extreme conditions of low contrast and short durations, processing of translat-
ing gratings is not performed by independent mechanisms. A qualitative explanation
of the data was presented, using two well-established aspects of processing of spatial
stimuli, namely the interaction across spatial frequency mechanisms first identified by
DeValois (1977), and the nonlinear contrast compression first argued for by Nachmias
and Sansbury (1974), and subsequently explored in detail by, e.g. Legge and Foley
(1980), Legge (1981), Wilson et al. (1983). Briefly, high spatial frequency gratings
(3 and 6 cpd) inhibit the response of mechanisms tuned to low spatial frequencies
(0.5 cpd). Thls inhibition results in the increase in detectlon thresholds reported in
Ex{)e'n;l:fhent 8.5. ThlS mhlbmon also acts on the off-frequencv mechamsms responsi-
ble for the speed discrimination performance. Low-contrast high SF gratings result
in a slight shift in the operating range of the off-frequency mechanism, so that the
difference in the mechanism’s response to nearly discriminable stimuli is enhanced
by the accelerating portion of the contrast nonlinearity, yielding the improvements
in discrimination performance noted in Experiments 8.1, 8.2, 8.3, and 8.6. High

contrast high SF gratings result in large inhibition of the low SF off-frequency mech-

anism, which effectively lose the ability to detect the low SF grating, thus yielding
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the decrements in performance noted in Experiment 8.5.
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Chapter 9

A Revised Model of

Speed Perception

How can one incorporate the psychophysical results described in Chapters 4 through
8 into a new computational model of speed perception? While the experiments
described earlier were all designed in the context of existing models, and especially
the experiments in the last two chapters were aimed at testing predictions which
stemmed from the models, their conclusions are difficult to use when it comes to
choosing between, e.g., gradient models and correlational models. The adaptation
results argue against the Watson and Ahumada (1985) model, but the other models
can be accomodated quite well. Recent data from Jackson and Welch (personal
communication) argues against two-channel models, as mentioned in Chapter 2, but
further work is needed to more fully specify the exact channel shapes. Finally, the
spatial frequency integration question is left unanswered by the results of Chapter 8,
which, while interesting, do not help identify the mechanism used by the visual
system to compute speed.

Given this conundrum, this chapter cannot hope to make any firm conclusions

regarding the speed model which will supplant all others. However, I take this
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opportunity to present a model which has emerged as a new take on an old model.
and which, it is hoped, will allow the future quantitative testing of a model with

hopes of good matches between psychophysical results and simulations’.

9.1 Outline

The model of speed perception presented here can mostly be considered to be a
“psychophysically correct” version of that presented in Grzywacz and Yauille (1990).
The general conceptual framework of that model is used, but the mathematically
convenient filter shapes which that model used are replaced with psychophysically
derived functions, and the estimation strategy is further refined. The purpose of these
manipulations is that while the model in Grzywacz and Yuille (1990) is proven to
arrive at the mathematically correct answer, it is not a model of discrimination, being
noise-free. The model presented here incorporates both peripheral and central noise
sources, with the hopes that psychophysical discrimination data can be replicated,
mostly thanks to the careful choice of filter functions. The estimation strategy used
is a maximum likelihood method, which is quite logically a popular one.

The first section will give a formal presentation of the filters used in the model,
followed by the proposed mechanism for speed estimation within a spatial-frequency
channel. The following section introduces the noise processes, which allow the model
to produce noisy estimates, which are needed to yield imperfect speed estimates,

a crucial step in reproducing human data. Finally, a set of less formal proposals

1The model presented in this chapter is the result of discussions between Dr. Grzywacz,
Prof. Welch and me over the last two years. It is presented here not so much as a indi-
vidual’s contribution (which it is not), but rather as my current thoughts regarding how
an interesting speed model could work. The good ideas in the model are the result of a
collaborative effort, but I am to blame for the more speculative proposals in the later part
of the chapter.
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for extensions to the model are presented, in order to account for some of the data

presented in the earlier chapters.

9.2 The Noise-free theory

The noise-free theory can be decomposed into three aspects, which will be considered
in turn. A general description of the filter set being used, both their number and
their general properties. Candidates functions used for the spatial and temporal
tuning shapes for the filters are then presented, based on some of the psychophysical
results presented in Chapter 2. Finally, the speed estimation procedure within a

spatial frequency band is presented.

9.2.1 Derivation of the Filter Response

The estimation of speed is assumed to be performed by spatiotemporal filters applied
to the retinal input. The visual stimulus is filtered by a set of filters tuned both
to spatial and temporal frequencies. There are I sets of spatial-frequency tuned
functions, and J sets of temporal-frequency tuned functions. There are thus I -
J filters, each with a given spatial- and temporal-frequency tuning functions (see
Figure 10). Existing data (Wilson et al., 1983, Section C.2) suggests that [ is at
least 6 and J is at least 3. Each filter F;; is a function of the stimulus r and time
t, and can be characterized by its best spatial and temporal frequencies €2.; and
Q0 Fij(r,t 2 Qi Quy) with i € {1---6} and j € {1,2,3}. For the purposes of
description, and because in the experiments proposed here motions are only along a
single direction, only filters with a single preferred direction and considered, but the
mathematical analysis can be performed identically across preferred directions. The

stimulus S is a function of space r and time t: S(r,t).
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Figure 9.1: Schematic representation of the F;; filters. In the top panel, each filter is
represented by its peak of sensitivity (shaded “bumps”). Depicted are three different
best TFs (J = 3) and six different best SFs (I = 6). The bottom panel plots the
TF sensitivities of the filters for a given SF (along the dashed line in the top panel).
Three different filters are visible (dashed curves), corresponding to the low-pass and
two band-pass channels. .

Assumption 1 (Small Receptive Fields) The receptive fields of the detectors are
small enough that the motion of the stimulus in front of any given detector can be

considered a linear translation.

If the receptive fields are assumed to be small enough, the stimulus S can be rewritten

as a function of r — vt, where v is the speed of the stimulus, that is, stimulus =
S(r —vt)
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Let us first consider the case of a translating sinusoidal wave. A translating sine
wave of amplitude A can be described as: A4e™r(*~¥8) where w./2% is the spatial
frequency of the sinewave. Because the stimulus is translating at a velocity v, w.-v =

wy, where w,/27 is the temporal frequency.
Assumption 2 (Linearity) The filters are linear.

If the filters are assumed to be linear, then the response of a filter F' to a given
stimulus S can be rewritten as the convolution F * S(r,t). The output of a filter to

a sinewave stimulus, therefore, is:

Sine filter output = A4 / / dr dt e**=¥Y) F(ry — r,to — t) (9.1)

= AF(we, we: O, ) (9.2)

where F is the fourier transform of F. The response of the filter to be the magnitude
of its output is defined to be A|F|.

In the Fourier domain, any translating stimulus can be described as the product of
a spatial component (corresponding to the texture of the stimulus) times a translation

component (corresponding to the motion of the stimulus);,... , . .

General stimulus = g{w;) - §(wy - Vv + w;) (9.3)

where ¢ is the Dirac delta function, zero everywhere but where its argument is zero,

and with an integral of 1. The response of a filter to this general translating stimulus

is therefore:

Response = |/ dw, dw; g(w, )6 (wr - vV + wy) Flwe,wy : O, Q) (9.4)

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



This equation follows from Equations 6 and 7 through the following reasoning: If
the response to a single sine wave is like in Equation 6, then for a general stimulus.
that is, with multiple sinewave components, the linear portion of the response is the
superposition of all individual sinewave responses weighted by the spectral distribu-
tion of the stimulus, that is, Equation 7. Using the fact that the integral of the delta

function is 1, one gets:

Response = '/dwr g(we) F(wp, —wr - v 1 Qp, Q) (9.5)

Assumption 3 (Locally Constant Spatial Frequency Spectrum) The recep-
tive fields of the detectors have spatial frequency tunings that are narrow enough that
the spatial spectrum of the stimulus in front of any given detector can be considered

constant.

This assumption, as well as Assumption 1, cannot be valid in general, since they
depend on the stimulus. However, one can postulate that these assumptions corre-
spond to knowledge that the visual system has about the statistics of images. In
other words, that these assumptions are normally true for real images and when the
stimuli do not fulfill them, predictable visual illusions should occur.

Thus, the texture component can be taken out of the integral, yielding:
Response = ‘g(ﬂ,) /dw,.l::'(w,, —w; -V, =) (9.6)

9.2.2 Filter Shapes

The filter functions used will have considerable impact on performance. These fil-
ters need to be direction selective. The first assumption is that the spatial profile

corresponds to that of a Gabor filter G,

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



.
L e gt St (9.7)

G(r:Q,) =

2ro

where €. is the spatial frequency of the carrier sinewave, o is the standard devia-
tion of the modulating gaussian and - defines the spatial orientation of the Gabor
(Gabor, 1946; Daugman, 1985). Using Gabor filters is not only in agreement with
physiology (Daugman, 1985), but also is the ideal filter for fulfilling Assumptions 1
and 3 simultaneously. This filter is the one among all physical filters that minimizes

the product of spatial bandwidth by spatial frequency bandwidth (Daugman, 1985).

The temporal profile used will be a linear combination of two temporal functions
T; and T3, the specific contribution of each being determined by the location in the
receptive field. This spatial dependence of the temporal functions is based on the
analyses of simple-cell data by Kontsevich (1995) and Reid, Soodak, and Shapley
(1991). Based on the Reid et al. (1991) data, the filters can be modeled as:

F(r,t) = G(r) - [s(r - n)T1(t) + (1 — s(r - n))T2(t)] (9.8)

where n is a spatial vector which determines the direction along which the T1/T;
combination occurs, s is a sigmoid which flattens [—oo, 0o] down to [0, 1] such that
when r - n is large and positive, s(r - n) is close to 1 and the linear combination is
mostly composed of T}, when r - n is large but negative, s(r -n) is close to 0 and the

linear combination is mostly composed of 5, and s(0) = 0.5.

The shapes of T} and T5 will determine the sustained or transient characteristics
of the filters. These functions will be based on Alpha functions, such as the sustained
and transient functions hg and h; used by Watson (1986) to fit temporal contrast

sensitivity data:
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he = Eh(t,ni,T) (9.9)

hy = &h(t,ny,T) — nh(t, n2, £7) (9.10)

where
h(t.n, ) = u(t)(T(n — 1)) 7L (t/7)" e t/T (9.11)
and u(t) is the unit step function. Watson (1986) found that values of 7 = 4.94,

£=1.0,n, =9, np =10, n = 1.0 and & = 1.33 fit the data well (see Figure 9.2).

-

0 20 40 60 80 100 120 140 160 180 200
Time (ms)

Figure 9.2: The Alpha functions kg (solid line) and h, (dashed line) used by Watson
(1986).

The filters are now completely specified, and the response of each filter can be

obtained for any given stimulus. To compute the response of a filter, one needs to
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get the integral over dw, of the Fourier transform of the filter, F'. First let us identify

the Fourier transform F:
F = /dr dt ettt p(r 1) (9.12)
= Fi(wy) ﬁr ¢ G(r)s(r, n) + To(wr) ﬁr e“rTG(r)(1 — s(r,n)) (9.13)

The integral needed is:

/dw,(F) - ﬁr[ﬁ G-s(t-v)+Tp-G-(1—s(r-v)) /iwrei“’"" (9.14)
Because

/dr §(r) €t =1 (9.15)

the integral
(1/27)? /dw,. et = §(r) (9.16)

since this integral is the conjugate of the inverse Fourier transform of 1. Hence,

ﬁw,(ﬁ) = (o) /dr[ﬁ-G-s(r-v)+T2-G-(1—s(r-v))]5(r) (9.17)

(27)2G(0 )[:r1 s(0) + T(1 — s(0))] (9.18)

(27) 2c;(0) [T (~wy - V) + To(~we - V)] (9.19)

Referring back to Equation 11, one can see that the response of the filter output to

a given stimulus is given by:
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Response = lg(Q,)Z—[ﬁ(—w,-v)+fg(—wr-v)][ (9.20)

= k|Ti(~we- V) + Do(—w; - V)| (9.21)
where k is a positive constant.

9.2.3 Speed Estimation

Equation 9.21 is an exact formula for the filters’ outputs. The next task is to define
how the filters are combined to yield a measure of speed. (The individual filters
are not speed tuned; their response depends on the spatial frequency, contrast and
temporal frequency of the stimulus.)

First an estimate of speed in each spatial frequency band will be obtained, and
then a best fit of the speed estimates across the spatial frequencies will be performed,
using a maximum-likelihood estimation procedure.

The response of a given filter can be influenced by two factors: the speed of the
stimulus (the desired measure) and the fraction of the stimulus spatial frequency
spectrum which falls within the bandwidth of the filter (function g(£2,) in Equa-
tion 9). To obtain the former, one needs to discount the effects of the latter. This
can be done by noticing that all of the filters in a given spatial frequency band are
equally affected by the texture of the stimulus, but unequally affected by the speed of
the stimulus. Note that the texture of the stimulus includes both spatial-frequency
effects and contrast effects. By considering simultaneously the outputs of all the
filters tuned to the same €, but different §2;, one can obtain an estimate of speed
unbiased by spatial frequency spectral distributions.

Consider the responses, R;, of the I filters, F;, which fall in a given spatial

frequency band i. In a noise-free system, these responses are exactly given by the
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product of a textural component (which is stimulus specific) times the sensitivity
of the filters at a given speed. Thus, by normalizing the filter responses across a
spatial frequency band (by dividing R; by ¥; R;), one obtains a set of normalized
responses which correspond uniquely to one speed [v| (the speed of the stimulus).
Therefore, in a noise-free system, obtaining the set of normalized responses would

solve the problem of measuring speed.

.9.3 Model Implementation: Noise & Numerical

Methods

The theory described above outlines a possible scheme for measuring stimulus speed
given a set of filters. The purpose of this section is to outline how this scheme ac-
counts or fails to account for human perceptual data. The theory above is perfect—
any given spatial frequency band contains enough filters to give perfect estimates of
stimulus speed (assuming the stimulus has energy in that spatial frequency band).
The model described below describes how the estimation procedure needs to be mod-
ified if noisy filter responses are taken into consideration. Since the model is a model
of human speed perception, the effect of noise on the model will be compared with
human performance by comparing the result of noisy simulations with psychophysical
measures of noise: discrimination thresholds.

The noise in the system is assumed to be characterizable by the addition of
Gaussian additive noise to the response of the filters. If M; is the measurement (not

normalized) of the output of filter F;, then
A{i = R,(V . Qr) + n,-(ai) (922)
where n; represents the noise, characterized by the standard deviation o; and ampli-
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tude 1/27c/? of a Gaussian with zero mean.

This simple noise (which is peripheral noise within the framework presented in
Chapter 4) has relatively complex consequences, since it means that any distribu-
tion of responses across a bank of filters even with identical SF tuning functions,
cannot be unambiguously attributed to a single speed, since the response is due to
a combination of the normal filter response, and to noise.

The estimation of speed in a given spatial frequency channel must therefore be
made on the measured values M; instead of the “true” responses R;. Let us begin
with the expected responses E;(v) of the filters for speed v. These responses are
normalized in the sense that they do not include the dependence on texture and
contrast embodied by & in Equation 9.21. Fortunately, the effect of k is the same for
all filters within a single spatial-frequency band. The only thing that changes from
filter to filter is the amount of noise added, since noise is random and independent

across filters. Therefore, for all 7 € {1---J}

Mi = K.Ei(V) + n;. (923)

For each choice of v, this is a linear system of J equations with J + 1 unknowns
(x and the n;). If somehow & is known from independent estimates by the visual
svstem, then one can solve for the n;; this strategy was called “the extra-information
strategy” by Grzywacz and Yuille (1990). Otherwise, one must compute the n; for
each choice of k¥ and v. For each such choice, each computed n; has an associated
probability p;, which can be computed from Equation 9.22.

Consequently, the probability of x and v given the measurements M; is

J
P (k,v|M;) = [] pi (5, v[M5) . (9.24)

=1

(Actually, to be exactly Bayesian, this probability must be weighted by the a priori
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probabilities of x and v. In other words, if the visual system knew what speeds,
textures, and contrasts are more likely to occur in the world, then it could take this
information into account to compute P(k, v|M;). However, since this information is
not available to us, it is assumed for Equation 9.24 that all speeds, textures, and
contrasts are equally likely.)

We postulate that to estimate speed, the visual system finds the v and « that
maximizes the probability P(x,v|M;) in Equation 9.24.

This probability can then further be used as a measure of the “confidence” that
the speed of the stimulus is indeed v. For example, if the probability is very close
to 1 for a specific value of v, then this means that very small amounts of noise were
needed to convert the expected responses of the filters into the measured responses. If
the probabilities are small for all v’s, it is because all values of v required improbable
amounts of noise to make the expected and measured responses match.

To work with Equation 9.24, the n; (noise amplitudes) need to be converted into
the probabilities p;. This conversion is performed by assuming that the visual system
knows the o; in Equation 9.22. However, this does not mean that o; must be constant.
On the contrary, a large body of evidence suggests that at suprathreshold contrasts,
contrast-noise increases with background contrast (Legge & Foley, 1980) and that
the slope of this increase depends on spatial and temporal frequencies (Burbeck &
Kelly, 1981; Phillips & Wilson, 1984). This noise-contrast relationship is commonly
known as the dipper function. Two assumptions are made about the dipper function:
1) That the noise increases not as a consequence of absolute contrast in the image
(which is very hard to define for arbitrary images), but as a consequence of the filter
responses (that is, neural noise). Because these responses are proportional to sine
wave contrasts for a large range of contrasts, this assumption is consistent with the
body of evidence on the dipper function. 2) That the visual system knows the dipper

function when response, rather than contrast, appears in the horizontal axis. With
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these assumptions in hand, for each choice of v and «, one has the expected response

kE;(v) and therefore o;.

The procedure outlined above yvields an estimate of speed and the confidence in
that speed for a given set of filters with common spatial-frequency tuning. There are

two possible ways to obtain a speed estimate for the entire filter bank.

One way of obtaining an estimate of speed using information from all spatial-
frequency channels is to perform a weighted regression of the estimates at each
spatial-frequency band, weighted by the confidence in that estimate yielded by the
procedure above. Thus the spatial-frequency channels with the most “believable”
information (most likely due to richer stimulus energy in their bandwidths) would
be given greater weight. This strategy, while likely to work and to be efficient in
terms of computational costs, is not the most mathematically optimal. It breaks the
principle of least commitment—information about the probability density function

in each channel is lost if all that is considered for the system-wide estimation is the

peak of those distributions.

An alternative strategy is to perform the probability computation on the output
of all the filters in all the channels for any given velocity and combinations of «’s
(k’s could be different for different spatial-frequency bands). This will yield a unique
probability density function for the entire filter bank. Computationally, this can be
performed by multiplying all of the channel-specific probability density functions by

one another just as the filter-specific functions were multiplied to yield the channel-

specific functions.

The peak of the resulting function can then be used to simulate perceived speed.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



9.4 Extensions

The model just outlindes provides a mechanism for obtaining perceived speed in such
a way as to include peripheral noise (i.e. noise at the level of the filters). This noise
allows the model (in theory) to provide both exact matches (which human observers
generally do, given enough signal), as well as measures of discrimination, which can
be compared with the literature mentioned at several places in this dissertation. For
example, simulations using an implementation of the model as formulated could be
compared to many of the experiments reviewed in Chapter 2, as well as the new
data in Chapters 4, 5 and 6. However, it should be clear that the model is unable
to deal with the adaptation data of Chapter 7, and that while the model will yield
improvements for stimuli with spatially rich spectra, it will not match the data of
Chapter 8, especially the last crucial experiment showing interactions between SF
channels. This last section will present possible extensions to the model which would

possibly allow it to account for this data.

9.4.1 Dynamics

The model presented above is a steady-state model. It does not incorporate any
changes to the response of the filters as a function of past exposure. There are two
known general effects which it can therefore not model. The first is the effect of
recent exposure to long-lasting stimuli, which yields adaptation effects as described
in Chapter 7. Two types of adaptation are frequently used, subtractive and divisive
inhibition. Fairly exhaustive (and exhausting) studies would be needed to provide
data which could allow the disambiguation between these two, if the study of Mandler
and Makous (1984) is any indication. Their study yielded a good model fit, but
required setting different adatability levels for each of the two channels. It would be

interesting to see if their data could be fit using the model just presented and their
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adaptation mechanism, and whether the differences in the temporal functions used
would yield a different answer regarding the type of inhibition and/or the adaptability
levels for the two channels.

A second type of long-term change should be considered as well. That is, it is
quite clear when doing speed experiments that observers undergo long-term plasticity.
They both learn how to do the task, as well a they get better. The spatial frequency
integration effects of Chapter 8 were especially susceptible to learning. While there
is a great deal of literature on learning systems, there is too little data available on
speed perception learning to usefully constrain the model, so no long term plasticity

modification is proposed at this stage.

9.4.2 SF Interactions

The results of Chapter 8 indicated that a speed model, while traditionally anchored
in the world of temporal vision, needs to take into consideration many results from
the world of spatial vision. Thus interactions (in this case inhibitory) between spatial
frequency channels should be taken into account. It is hard to know how one should
model such interactions, however, since the data in Chapter 8 are to my knowledge

the first showing an effect of cross-SF interactions on speed perception.

9.5 Conclusion

This chapter has sketched a new model of speed perception which incorporates psy-
chophysically derived filter shapes, computationally strong mechanisms for comput-
ing veridical speed, and a natural mechanism for dealing with filter noise which can
in turn yield discrimination thresholds. Extensions have been briefly described which
could allow the model to fit the data presented in the previous chapters which could

not be accounted for by the basic model. Whether the model matches the data or
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not will have to wait for its implementation and simulations.
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Conclusion

10.1 Summary

This dissertation has presented a set of experiments concerned with aspects of speed
perception. These experiments were motivated by a desire to better understand how
speed perception occurs, especially within the context of plausible computational
models thereof. The results from each experiment are summarized briefly, followed
by a cautionary note on the scope of these results.

The first experiment addressed the important and often overlooked result of
Bowne (1990), which argued that temporal frequency discrimination (along with spa-
tial frequency and orientation discrimination, which we are not concerned with here)
is not affected by stimulus contrast. The generality of these results was questioned
due to some methodological concerns, namely the long &uration of the stimulus, and
the lack of duration and contrast jitter. My results indicate that, unlike in Bowne
(1990), speed discrimination s affected by stimulus contrast. This means both that
the models of speed discrimination which assume that detector response is mono-
tonically related to stimulus contrast can be used and that the parameters of the
spatiotemporal channels derived from experiments manipulating stimulus contrast
can be used in the study of speed perception.

The second and third experiments report preliminary measurements on the spatial

and temporal extent over which speed discrimination can increase. The temporal
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integration period of the speed mechanism is shown to be between 120 and 200 msec.
consistent with previous psychophysical and physiological results. Stimulus durations
longer than 200 msec do not result in significantly better performance. In contrast,
integration of information over spatial extent occurs up to at least 12 deg of visual
angle. Furthermore, as first pointed out by Bowne (1990), the speed sensitive units

appear to be elongated along the direction of motion.

The fourth set of experiments showed that the lowpass temporal channel, which
is sensitive to stimuli with low temporal frequencies can be adapted by exposure to
stationary stimuli, and is an active participant in the computation of speed. After
adaptation to stationary gratings, the perceived speed of moving gratings was higher
than it would have been otherwise, consistent with some but not all speed models
in the literature. This increase in perceived speed is not due to afterimages, spatial

frequency adaptation, or contrast adaptation.

The fifth set of experiments tested the ability of the speed system to integrate
information across a wide range of spatial frequencies. While an increase in speed
discrimination performance was obtained for compound gratings over single gratings,
subsequent testing revealed that this increase in performance is not “integration”
but rather the consequence of temporal frequency independent interactions between
spatial frequency channels. The question of whether speed computation can use

information from a broad range of spatial frequencies is left open.

Finally, Chapter 9 presents a sketch of a new model of speed perception, which
incorporates psychophysically and physiologically motivated spatiotemporal filters

and a computationally optimal speed estimation strategy.
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10.2 Scope Limitations

Models survive because they account for data elegantly, or become discarded because
they need as many knobs and switches as there are data sets to fit. Thus the
qualities and limitations of the model sketched in Chapter 9 will be made obvious
as it is further developed and tested. Experimental data, however, lasts, provided it

is viewed within the appropriate context.

The absolute numbers of discrimination performance reported in this dissertation
indicate, by the standards of speed discrimination experts, rather poor performance.
As has been mentioned repeatedly, this is deliberate, and the result of careful pa-
rameter hunting. Finding stimulus parameters where small stimulus manipulations
can yield measurable effects is a slow (and painful, from the subject’s point of view)
process. When comparing data from these studies with other similar studies, it is
important to compare the stimulus durations and contrasts, and whether the displays
have jittered durations and/or contrasts.

As mentioned in the early chapters, all of the stimuli I used were luminance
gratings, viewed under mesopic/photopic lighting conditions, foveally. Extrapolating
any of the specific results presented here to the domains of scotopic, peripheral or
color vision is best avoided. Also as discussed at length in the Introduction, the
characteristics of speed discﬁmination depends on the task. More precisely, the
mechanisms by which humans compute retinal speed, whether based on estimates
of SF and TF, direct speed estimates, or estimates of position and duration, will

depend on the speed, the temporal frequency and the stimulus duration.

One final stimulus dimension needs to be mentioned, and that is the spatial ar-
rangement and extent of the stimulus. As pointed out by Snowden (1997), perceived
speed of a grating depends on the size of the grating. Along similar lines, Metha, Bex,

and Makous (1997) found that the perceived speed of spatially localized drifting grat-
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ings depended on whether the orientations of the patches was such that the patches
formed a translating, expanding or rotating pattern, so that expansion patterns were
perceived to move 30% faster than rotating and translating patterns. Similar results
regarding the perceived speed of expanding, contracting and rotating dots have been
reported by Geesaman and Qian (1996, in press). Clearly these spatial interactions
(possibly due to biases related to ego-motion) are missing in all of the models of

speed perception described above, and should be accounted for by a comprehensive

speed model.

10.3 A Note on Physiology

The Preface discussed speed perception as a field where physiology and psychophysics
can be related, along with studies of computational models. Yet this dissertation has
only briefly and infrequently mentioned physiological results. This is deliberate, and
reflects my feeling that, as far as speed is concerned, the physiological cards have yet
to be played. Almost all computational modellers, from Marr and Ullman (1981) on,
cite the results of physiological studies, be they from X and Y cells in the cat retina,
magno and parvo cells in the LGN or V1, or cortical cells in early or late visual
cortex. And vet all of these modellers appeal to this data in order to argue for their
models, in o'ppo!sit;ior.l to the comﬁeting models present in the literature. This is no
doubt because of a selection bias on the part of the modellers. There are many cells
in the brain, and many exploratory studies of their behaviors. With enough patience,
reports of a wide variety of cellular behaviors can be found in the literature. Marr
and Ullman (1981) audaciously proposed a set of theoretically motivated facts about
visual cells, and categorized the importance of each prediction’s ability to falsify the
model if it were disproved. More recently, Simoncelli and Heeger (1997) make four

similar proposals. Although these proposals are derived from the theoretical model,
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their eventual validation would not provide clear counter-evidence against the other
models of speed perception, as the predictions are mostly related to the computation
of stimulus direction and not speed. The reason for this paucity of theoretically-
motivated physiological data for speed is quite simple to explain. Firstly, most of
the physiological experiments on cell properties have used stimuli such as bars and
dots, mostly for traditional reasons. The use of spectrally complex (and poorly con-
trolled) stimuli, however, has obscured the distinction between temporal frequency
and speed, and while many physiological papers refer to the speed-tuning of a cell,
their methods do not allow one to differentiate between speed-tuning and temporal
frequency tuning. Secondly, if all of the models of speed agree on one fact, it is
that is that speed cannot be read from a single cell’s firing rate. It is implicit in the
distribution of several cells, in ways which are either simple (as in the simplest ratio
gradient model) or complex (as in the Grzywacz and Yuille (1990) model). Thus
it will probably take the use of some of the more recent multielectrode recording

techniques to disentangle between these competing views.

10.4 Closing Comments

The topic of this dissertation was chosen because it appeared to provide fertile ground
for interactions between modeling and psychophysical approaches to a common prob-
lem. Most of the headway reported in this dissertation has been in the shape of
psvchophysical experiments, which, inspired by the existing models of speed percep-
tion, provide more data regarding the actual process of human speed perception. It
is now time for the models to provide quantitative accounts of how these data come
to bear, something they are far from being able to do at this stage. None of the
published models account for some of the non-veridical speed perception data, such

as the contrast effect (Thompson, 1982) and the duration effect (Giaschi & Anstis,
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1989). Neither do they account for any of the data on speed discrimination, since
they are almost all noise-free models. The model presented in the last chapter pro-
vides the beginning of a framework for such study, but clearly many issues remain
unsolved. It will be interesting to see whether a single model can provide a concise
and compelling explanation for the varied types of effects which have been reported,

such as those reported in this dissertation.
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